
© 2019 Nokia1

Kedar Namjoshi
Bell Labs, Nokia

VMCAI 2019 Winter School
11 Jan 2019

© 2019 Nokia2

A talk of many things…

• What is compositional verification?

• What makes it important? Difficult?
Fascinating?

• Compositional Symmetry Reduction

• Parameterized Compositional
Verification

“The time has come,” the Walrus said,

“To talk of many things:

Of shoes--and ships--and sealing-wax--

Of cabbages--and kings--

And why the sea is boiling hot--

And whether pigs have wings.”

from Through the Looking-Glass and What

Alice Found There, Lewis Carroll, 1872.

© 2018 Nokia3

Compositional Verification

© 2019 Nokia4

What is Compositional Verification?

Key Idea: Break up a program proof into local questions of limited scope.

(Checking a Large Routine, Alan Turing, 1949)

For sequential programs, to prove {P} S1;S2 {Q}, invent “midpoint” assertion R and
establish {P} S1 {R} and {R} S2 {Q} instead.

© 2019 Nokia5

Why Compositional Verification?

Key: Break up a program proof into local questions of limited scope.

We’ll focus on compositional verification for concurrent, shared-memory programs.

• State Explosion

A program with 𝑁 concurrent components can have a global state space of size 2𝑁

(In theory, verification is PSPACE-hard in 𝑁.)

Compositional verification is one way to ameliorate this “State Explosion.”

• Loose Coupling

Large, scalable programs are expected to have “loosely coupled” components.

Compositional methods aim to exploit loose coupling.

© 2019 Nokia6

What is a Compositional Verification Method?

Key: Break up a program proof into local questions of limited scope.

A (de)compositional verification method should have

1. A sound strategy for breaking up a proof of goal 𝜑 for program 𝑃 = 𝑃1 || … || 𝑃𝑁 into
independent proofs of subgoals 𝜃𝑖 for each 𝑃𝑖

2. A solution for possible incompleteness in this abstraction, and

3. A mechanical method to achieve #1 and #2.

We’ll focus on program invariants.

© 2019 Nokia7

Running Example: Dining Philosophers

Philosophers 𝑃0… 𝑃𝑁−1 sit around a circular table, with forks 𝑓0 … 𝑓𝑁−1 between them.

1. Each philosopher cycles though states Thinking, Hungry, and Eating.

2. Initially, all philosophers are Thinking, and every fork is available.

3. A philosopher may eat only if it has picked up its left and right forks.

4. To avoid deadlock, a hungry philosopher may put down a fork it has picked up earlier
(this ensures mutual exclusion but not starvation-freedom).

5. After eating, a philosopher makes both its forks available.

The goal is to show that no pair of neighboring philosophers may eat at the same time.

© 2019 Nokia8

Dining Philosophers: Global Invariance

A global invariant is an assertion, 𝜃 𝑙0, … , 𝑙𝑁−1, 𝑓0, … , 𝑓𝑁−1 , over the global state space formed
by local variables 𝑙𝑖 and shared variables 𝑓𝑖 .

From an experiment with SPIN:

Compositional analysis takes less than 1 second, for over 3000 processes.

© 2019 Nokia9

Dining Philosophers: Global Invariance in a Picture

0

3

1

24

5

𝜃(𝑙0, … , 𝑙5, 𝑓0, … , 𝑓5)

© 2019 Nokia10

Dining Philosophers: Compositional Invariance in a Picture

0

3

1

24

5

𝜃0(𝑙0, 𝑓5, 𝑓0)

𝜃1(𝑙1, 𝑓0, 𝑓1)

𝜃2(𝑙2, 𝑓1, 𝑓2)

𝜃3(𝑙3, 𝑓2, 𝑓3)

𝜃4(𝑙4, 𝑓3, 𝑓4)

𝜃5(𝑙5, 𝑓4, 𝑓5)

“Loosely Coupled”
Local Invariants

© 2019 Nokia11

Compositional Invariance

A compositional invariant is a collection of per-process assertions 𝜃𝑖 such that
for each 𝑖:

1. The assertion 𝜃𝑖 is limited to the “neighborhood” of process 𝑃𝑖: i.e., the state space
induced by the local variables of this process and its adjacent shared variables.

2. 𝜃𝑖 is an inductive invariant for process 𝑃𝑖

3. The assertion 𝜃𝑖 is immune to “interference” (via shared variables) from actions of

adjacent processes. I.e., [𝜃𝑖 ∧ 𝜃𝑗 ∧ 𝑇𝑗 ⇒ 𝜃𝑖
′] is valid.

(These are just the Owicki-Gries proof rules, freed from program syntax.)

Theorem: For a compositional invariant 𝜃𝑖 , the conjunction ∧ 𝑖: 𝜃𝑖 is a global inductive
invariant.

© 2019 Nokia12

Calculating a Compositional Invariant

A process 𝑃𝑖 is defined by its initial states 𝐼𝑖 and transition relation 𝑇𝑖 .

The conditions for compositional invariance are:

1. (Inductiveness) 𝐼𝑖 ⇒ 𝜃𝑖 and 𝜃𝑖 ∧ 𝑇𝑖 ⇒ 𝜃𝑖
′

2. (Non-Interference) [𝜃𝑖 ∧ 𝜃𝑗 ∧ 𝑇𝑗 ⇒ 𝜃𝑖
′]

Collecting constraints for each 𝑖, we get a set of simultaneous implications
{[𝐹𝑖(𝜃) ⇒ 𝜃𝑖

′]}
where each 𝐹𝑖 is a monotone operator on the 𝜃’s. E.g., for the 6-node ring:

𝐹0(𝜃) = 𝐼0 ∨ 𝑛𝑒𝑥𝑡0 𝑇0, 𝜃0 ∨ 𝑛𝑒𝑥𝑡0 𝑇5, 𝜃0 ∧ 𝜃5 ∨ 𝑛𝑒𝑥𝑡0(𝑇1, 𝜃0 ∧ 𝜃1)

Theorem: The strongest compositional invariant 𝜃𝑖
∗ is the least simultaneous fixpoint of

the operators 𝐹𝑖 . Computational complexity is polynomial in 𝑁.

© 2019 Nokia13

Calculating a Compositional Invariant: in a Picture

The fixpoint may be calculated by alternating reachability with interference-closure.

Process 𝑃0 Process 𝑃1

Mutual Interference

𝜃0 𝜃1

reachability

interference

reachability

interference

© 2019 Nokia14

Calculating a Compositional Invariant-II

The conditions for compositional invariance are in Horn-clause form with unknowns {𝜃𝑖}:

1. (Inductiveness) 𝐼𝑖 ⇒ 𝜃𝑖 and 𝜃𝑖 ∧ 𝑇𝑖 ⇒ 𝜃𝑖
′

2. (Non-Interference) [𝜃𝑖 ∧ 𝜃𝑗 ∧ 𝑇𝑗 ⇒ 𝜃𝑖
′]

A Horn-clause solver may be also used to find a solution
(which need not be the strongest compositional invariant).

© 2019 Nokia15

Incompleteness

A compositional invariant is generally weaker than the set of reachable states. Thus, some
properties may be true but unprovable compositionally.

Example:

The strongest compositional invariant is 𝜃𝑖 = 𝑡𝑟𝑢𝑒 !

var lock : {0 ,1} , initially lock =1

process P(i) {
while (true) {

Thinking:
Hungry: atomic {if (lock =1) then lock := 0}
Eating: lock := 1

}
}

© 2019 Nokia16

(In)completeness

This can be remedied by adding auxiliary shared variables to “couple” the local state spaces
together more tightly.

Example:

Now the strongest compositional invariant is 𝜃𝑖 = (𝐸𝑎𝑡𝑖𝑛𝑔 𝑖 ⇔ 𝑙𝑜𝑐𝑘 = 0 ∧ 𝑙𝑎𝑠𝑡 = 𝑖)

var lock : {0 ,1} , initially lock =1
var last : 0..N, initially 0 // the last process to Eat

process P(i) {
while (true) {

Thinking:
Hungry: atomic { if (lock =1) then lock := 0; last := i }
Eating: lock := 1

}
}

© 2019 Nokia17

Open Questions

• What sort of auxiliary information is needed for typical proofs? Are scalable programs
truly loosely coupled? I.e., is the auxiliary information simple and minimal?

• Can the right auxiliary variables be discovered automatically?

[for an initial attempt, see Cohen & Namjoshi, CAV 2008]

• What hints could a programmer give to simplify such inference?

• How should one design (perhaps, synthesize) programs with easy modular proofs? Are
new kinds of type systems/interface specifications needed?

© 2019 Nokia18

Neighborhood Symmetry

© 2019 Nokia19

Dining Philosophers: Compositional Symmetry

0

3

1

24

5

𝜃0

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

Which symmetries
are appropriate for
compositional
invariants?

© 2019 Nokia20

Neighborhood Symmetry

• Nodes 𝑚 and 𝑛 have symmetric neighborhoods if there is a bijection between the edges
adjacent to the nodes.

In the ring, the edges of node 𝑚 are the forks 𝑓𝑚−1, 𝑓𝑚

• Conjecture: if nodes 𝑚 and 𝑛 have symmetric neighborhoods and the processes placed
on them, 𝑃𝑚 and 𝑃𝑛, are isomorphic, then in any compositional invariant, 𝜃𝑚 and 𝜃𝑛 are
isomorphic.

This is not quite true.

One needs a recursive notion of neighborhood symmetry, called “balance.”

(cf. Martin Golubitsky and Ian Stewart: Nonlinear dynamics of networks: the groupoid formalism, Bull. AMS, 2006.)

© 2019 Nokia21

Balance Relations

• A local symmetry is a triple (𝑚, 𝛽, 𝑛) where 𝛽 is a bijection on the edges of 𝑚 and 𝑛.
(E.g., for a ring, the bijection 𝛽 𝑚,𝑛 maps 𝑓𝑚−1 ↦ 𝑓𝑛−1 and 𝑓𝑚 ↦ 𝑓𝑛)

• A balance relation is a set of local symmetries satisfying a bisimulation-like constraint

If (𝑚, 𝛽, 𝑛) is in the relation and node 𝑘 is adjacent to 𝑚
there is a node 𝑙 adjacent to 𝑛 such that for some 𝛾

(𝑘, 𝛾, 𝑙) is in the relation
and 𝛽 and 𝛾 agree on all common edges.

Theorem: If (m, 𝛽, 𝑛) is in a balance relation and the processes 𝑃𝑚 and 𝑃𝑛 are isomorphic,
the strongest compositional invariants 𝜃𝑚

∗ and 𝜃𝑛
∗ are also isomorphic up to 𝛽.

© 2019 Nokia22

Discovering Balance

• Many networks with regular structure are fully balanced (e.g., ring, mesh, torus,
hypercube). Note these have limited global symmetry.

• Every global symmetry group induces a balance relation

• Star and complete networks are fully balanced as well

• In fact, any transitive global symmetry group induces a full balance relation

• Even irregular networks can be balanced, after a bit of neighborhood abstraction

© 2019 Nokia23

Using Balance for Symmetry Reduction

• Consider a ring with 𝑁 nodes: any two nodes are balanced.

• Hence, in the strongest compositional invariant, 𝜃𝑚
∗ and 𝜃𝑛

∗ are isomorphic

• So it suffices to compute just one component, say 𝜃0
∗, and derive the others by symmetry

• The complexity thus reduces from 𝑃𝑜𝑙𝑦(𝑁) to a constant!

• More generally, the computation is limited to the representatives for each balance class.

© 2019 Nokia24

Parameterized Compositional Verification

• Scalable programs are typically parametric in the number of processes

• The parameterized model checking problem (PMCP) is to automatically validate all
instances of a parametric program

• This is undecidable in general [Apt-Kozen 1986]

• Only a handful of decidable cases are known

• What if we weaken the requirement to the construction of a modular parametric proof?
This is the parameterized compositional model checking problem (PCMCP)

• It is also undecidable in general [Namjoshi-Trefler 2016]

• However, many undecidable cases of PMCP become decidable for PCMCP

© 2019 Nokia25

Parameterized Compositional Verification – Decidability

• The key to decidability is exploiting balance across arbitrary-sized configurations.

• E.g., consider Dining Philosophers on rings.

• By balance reduction, it suffices to compute 𝜃0
∗ for a ring of size 𝑁

• This computation is independent of the value of 𝑁

• Hence, 𝜃0
∗ computed on a ring of size 2 produces a compositional invariant for all 𝑁!

• Thus, the PCMCP is decidable for rings – note that the PMCP is undecidable for rings (quite easily, too)

• A similar argument shows the decidability of PCMCP for other constant-degree networks such
as mesh and tori.

• PCMCP is also decidable for non-constant degree networks (e.g., one control and many user
processes) under restrictions.

© 2019 Nokia26

Balancing Irregular Networks with Abstraction

• Example: Dining Philosophers on an arbitrary graph.

A philosopher must gather forks on all adjacent edges in order to eat.

• Abstract philosopher behavior by ignoring the number of edges, retaining only the
predicate “all forks are acquired”. Under this abstraction, any two nodes are balanced.

• By previous arguments, the PCMCP is decidable for Dining Philosophers over arbitrary
graphs.

• A similar argument applies to the PCMCP over dynamic graphs as well.

© 2019 Nokia27

Open Questions

• What types of abstractions are most useful for compositional reasoning?

• Can the right abstractions be inferred automatically?

• How can one add auxiliary variables (i.e., ensure completeness) while preserving balance?

• Could one use the symmetry results to design (perhaps, synthesize) parametric
programs with easy modular proofs?

© 2019 Nokia28

What I haven’t talked about

• Behavior-based compositional verification rules. E.g., infer 𝑀1|| 𝑀2 ⊨ 𝜑 from

𝑀1|| 𝐴2 ⊨ 𝐴1
𝑀2|| 𝐴1 ⊨ 𝐴2

and 𝐴1|| 𝐴2 ⊨ 𝜑

• Automated learning-based algorithms to infer adequate 𝐴1 and 𝐴2.

• Compositional rules for liveness properties and their delicate soundness proofs.

• And anything remotely practical ☺

© 2019 Nokia29

To Sum Up

• Modular reasoning is absolutely essential to understanding and designing complex
programs.

• Fundamental, fascinating questions about modular verification remain open.

• The ideal is a program design method that uses modular assertions to ease verification.

© 2019 Nokia30

Thanks to

• Richard Trefler (U. Waterloo)

• Ariel Cohen (NYU), Lenore Zuck (UIC), Yaniv Sa’ar (Weizmann)

• Dimitra Giannakopoulou and Corina Pasareanu (NASA Ames)

• DARPA and the NSF, for supporting this research

© 2019 Nokia31

Background Reading List – I

• Books and Surveys

• de Roever et al: Concurrency Verification: Introduction to Compositional and Noncompositional Methods, 2001

• Giannakopoulou, D., Namjoshi, K.S., Pasareanu, C. Compositional Reasoning, Handbook of Model Checking, 2018

• Seminal Work

• Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic approach. Commun. ACM 1976

• Lamport, L.: Proving the correctness of multiprocess programs. Trans. Softw. Eng., 1977

• Misra, J., Chandy, K.M.: Proofs of networks of processes. Trans. Softw. Eng. 1981

• Jones, C.B.: Tentative steps toward a development method for interfering programs, TOPLAS 1983

• Behavior-based Rules

• Grumberg, O., Long, D.E.: Model checking and modular verification, TOPLAS 1994

• Alur, R., Henzinger, T.A.: Reactive modules, FMSD 1999

• McMillan, K.L.: Circular compositional reasoning about liveness, CHARME 1999

• Fixpoint Formulations of Compositional Invariance

• Cousot, P., Cousot, R.: Invariance proof methods and analysis techniques for parallel programs, Automatic Program
Construction Techniques, 1984

• Flanagan, C., Qadeer, S.: Thread-modular model checking, SPIN 2003

• Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized systems, VMCAI 2007

© 2019 Nokia32

Background Reading List – II

• Neighborhood Symmetry

• Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. AMS, 2006

• Namjoshi K.S., Trefler, R.J.: Local symmetry and compositional verification, VMCAI 2012

• Learning auxiliary assertions

• Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with automatically generated assumptions, ASE 2005

• Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties, CAV 2007

• Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying multi-threaded programs. POPL 2011

• Parameterized Compositional Verification

• Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants, TACAS 2001

• Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few, VMCAI 2013

• Namjoshi, K.S., Trefler, R.J.: Parameterized Compositional Model Checking, TACAS 2016

There are many, many other excellent papers on compositional reasoning theory and practice!

© 2019 Nokia33

Formal Acknowledgements

This work was supported, in part, by DARPA under agreement number FA8750-12-C-0166.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

This material is based upon work supported, in part, by the National Science Foundation
under Grant No. (NSF CCF-1563393). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Public

