
Computing with SAT Oracles

Joao Marques-Silva

University of Lisbon, Portugal

VMCAI 2019 Winter School

IST, Lisbon, Portugal

January 09-12 2019

1 / 177

What is SAT?

• SAT is the decision problem for propositional logic

– Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (,)

– Often restricted to Conjunctive Normal Form (CNF)

– Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

2 / 177

What is SAT?

• SAT is the decision problem for propositional logic

– Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (,)

– Often restricted to Conjunctive Normal Form (CNF)

– Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

2 / 177

What is SAT?

• SAT is the decision problem for propositional logic

– Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (,)

– Often restricted to Conjunctive Normal Form (CNF)

– Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

2 / 177

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

– Conflict-Driven Clause Learning (CDCL)
– (CDCL) SAT has impacted many different fields
– Hundreds (thousands?) of practical applications

3 / 177

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

– Conflict-Driven Clause Learning (CDCL)
– (CDCL) SAT has impacted many different fields
– Hundreds (thousands?) of practical applications

3 / 177

CDCL SAT solver improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

4 / 177

How good are SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995∼2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s

4. Glucose: modern state of the art CDCL SAT solver

5. ...

• Example 1: model checking example (from IBM)

• Example 2: cooperative path finding (CPF)

5 / 177

How good are SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995∼2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s

4. Glucose: modern state of the art CDCL SAT solver

5. ...

• Example 1: model checking example (from IBM)

• Example 2: cooperative path finding (CPF)

5 / 177

How good are SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995∼2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s

4. Glucose: modern state of the art CDCL SAT solver

5. ...

• Example 1: model checking example (from IBM)

• Example 2: cooperative path finding (CPF)

5 / 177

How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)

6 / 177

How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)

6 / 177

How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)

6 / 177

How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)

6 / 177

How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)

6 / 177

How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)

6 / 177

SAT can make the difference – axiom pinpointing

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L

+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo

ut

• EL+ medical ontologies [AMM15]

– Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes)
& Enumeration

7 / 177

SAT can make the difference – model based diagnosis

10−2 10−1 100 101 102 103

wboinc

10−2

10−1

100

101

102

103

sc
ry

pt
o

600 sec. timeout

60
0

se
c.

tim
eo

ut

• Model-based diagnosis problem instances [MJIM15]

– Maximum satisfiability (MaxSAT)

8 / 177

CDCL SAT is ubiquitous in problem solving

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

9 / 177

This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177

This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177

This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177

This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177

This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177

This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177

Part 0

Basic Definitions

11 / 177

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

12 / 177

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

12 / 177

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

– Example models:

I {r , s, a, b, c, d}

I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

12 / 177

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

12 / 177

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [SP04, SB09]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)

13 / 177

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥
– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [SP04, SB09]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)

13 / 177

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥
– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [SP04, SB09]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)

13 / 177

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 177

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 177

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 177

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅
w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 177

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅
w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 177

Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]

15 / 177

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict

16 / 177

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Proof trace ⊥: (ā ∨ c) (a ∨ b) (c̄) (b̄)

16 / 177

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Resolution proof follows structure of conflicts

16 / 177

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)

16 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule
17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

ȳ

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

ȳ

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

∅
x̄

a

y

b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 177

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

∅
x̄

ā

y

b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 177

Part 1

CDCL SAT Solving

18 / 177

What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

– Clause learning & non-chronological backtracking [MS95, MSS96b, MSS99]

I Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

I Minimize learned clauses [SB09, Gel09, LLX+17]

I Opportunistically delete clauses [MSS96b, MSS99, GN02, AS09]

– Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

– Lazy data structures

I Watched literals [MMZ+01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZ+01]

I Phase saving [PD07]

– ...

19 / 177

What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

– Clause learning & non-chronological backtracking [MS95, MSS96b, MSS99]

I Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

I Minimize learned clauses [SB09, Gel09, LLX+17]

I Opportunistically delete clauses [MSS96b, MSS99, GN02, AS09]

– Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

– Lazy data structures

I Watched literals [MMZ+01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZ+01]

I Phase saving [PD07]

– ...

19 / 177

Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

20 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution
– Learned clauses result from (selected) resolution operations

21 / 177

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [MMZ+01]

22 / 177

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [MMZ+01]

22 / 177

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [MMZ+01]

22 / 177

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [MMZ+01]

22 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}

1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}

2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅

3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}

4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}

5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅

6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –

23 / 177

Quiz – conflict analysis

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄} {c , d}
4 [c, d] c c1 {h̄, b̄} {a}
5 [d , a] d c2 {h̄, b̄} ∅
6 [a] a dec var {h̄, b̄, ā} –

7 [] – – {h̄, b̄, ā} –
23 / 177

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

24 / 177

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• But a is an UIP [MS95, MSS99]

– Dominator in DAG for decision level 4

24 / 177

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• But a is an UIP [MS95, MSS99]

– Dominator in DAG for decision level 4

24 / 177

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• But a is an UIP [MS95, MSS99]

– Dominator in DAG for level 4

• Learn clause (w̄ ∨ x̄ ∨ ā)
24 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

25 / 177

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

26 / 177

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}

1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄, ē} ∅
6 [] – – {h̄, ē} –

26 / 177

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}

2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄, ē} ∅
6 [] – – {h̄, ē} –

26 / 177

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅

3 [e] e c3 {h̄, ē} ∅
6 [] – – {h̄, ē} –

26 / 177

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄, ē} ∅

6 [] – – {h̄, ē} –

26 / 177

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.

0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f , g}
1 [f , g] f c4 {h̄} {e}
2 [g , e] g c5 {h̄} ∅
3 [e] e c3 {h̄, ē} ∅
6 [] – – {h̄, ē} –

26 / 177

Quiz (Cont.) – non-chronological backtracking

Without UIP:

Level Dec. Unit Prop.
0
1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

ā

c4
c1

c1

c2

c3

c3

c4

c5

c6

c6

With UIP:

Level Dec. Unit Prop.
0
1

2

3

4

∅
h

b

y

a c

d

a e f

g

⊥

ē

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

27 / 177

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

28 / 177

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

28 / 177

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

28 / 177

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x̄ ∨ ȳ ∨ z̄)

28 / 177

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x̄ ∨ ȳ ∨ z̄)

28 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

•
• Cannot apply self-subsuming

resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c

∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d

30 / 177

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a, b] –

r a {a, c} ∅ [b] a marked

r b {a, c} {b} [] b decision & unmarked

r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

31 / 177

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a, b] –

r a {a, c} ∅ [b] a marked

r b {a, c} {b} [] b decision & unmarked

r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

31 / 177

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a, b] –

r a {a, c} ∅ [b] a marked

r b {a, c} {b} [] b decision & unmarked

r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

31 / 177

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a, b] –

r a {a, c} ∅ [b] a marked

r b {a, c} {b} [] b decision & unmarked

r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

31 / 177

Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

32 / 177

Branch randomization

• Heavy-tail behavior: [GSC97]

– 10000 runs, branching randomization on satisfiable industrial instance

∴ use rapid randomized restarts (search restarts)

33 / 177

Search restarts

• Restart search after a number of conflicts

– Increase cutoff after each restart

I Guarantees completeness
I Different policies exist

– Effective for SAT & UNSAT formulas. Why?

I Proof complexity arguments

– Clause learning (very) effective in between restarts

cutoff

cutoff

✓

34 / 177

Search restarts

• Restart search after a number of conflicts
– Increase cutoff after each restart

I Guarantees completeness
I Different policies exist

– Effective for SAT & UNSAT formulas. Why?

I Proof complexity arguments

– Clause learning (very) effective in between restarts

cutoff

cutoff

✓

34 / 177

Search restarts

• Restart search after a number of conflicts
– Increase cutoff after each restart

I Guarantees completeness
I Different policies exist

– Effective for SAT & UNSAT formulas. Why?

I Proof complexity arguments

– Clause learning (very) effective in between restarts

cutoff

cutoff

✓

34 / 177

Search restarts

• Restart search after a number of conflicts
– Increase cutoff after each restart

I Guarantees completeness
I Different policies exist

– Effective for SAT & UNSAT formulas. Why?
I Proof complexity arguments

– Clause learning (very) effective in between restarts

cutoff

cutoff

✓

34 / 177

Search restarts

• Restart search after a number of conflicts
– Increase cutoff after each restart

I Guarantees completeness
I Different policies exist

– Effective for SAT & UNSAT formulas. Why?
I Proof complexity arguments

– Clause learning (very) effective in between restarts

cutoff

cutoff

✓

New
clauses

New
clauses

34 / 177

Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

35 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)

– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZ+01]

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZ+01]

– Watched literals are one example of lazy data structures

I But there are others [ZS00]

36 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause
At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause
At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause
At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause
At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause
At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Watched literals – different implementations exist!

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause
At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched

37 / 177

Additional key techniques

• Conflict-driven branching [MMZ+01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [MSS96b, MSS99]

– Delete less used clauses [GN02, ES03]

– Delete based on LBD metric [AS09]

• Other effective techniques:

– Phase saving [PD07]

– Novel restart strategies [Hua07, BF15, LOM+18]

– Preprocessing/inprocessing [JHB12, HJL+15]

– Clause minimization: LBD-based and UP-based [AS09, LLX+17]

38 / 177

Additional key techniques

• Conflict-driven branching [MMZ+01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [MSS96b, MSS99]

– Delete less used clauses [GN02, ES03]

– Delete based on LBD metric [AS09]

• Other effective techniques:

– Phase saving [PD07]

– Novel restart strategies [Hua07, BF15, LOM+18]

– Preprocessing/inprocessing [JHB12, HJL+15]

– Clause minimization: LBD-based and UP-based [AS09, LLX+17]

38 / 177

Additional key techniques

• Conflict-driven branching [MMZ+01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [MSS96b, MSS99]

– Delete less used clauses [GN02, ES03]

– Delete based on LBD metric [AS09]

• Other effective techniques:

– Phase saving [PD07]

– Novel restart strategies [Hua07, BF15, LOM+18]

– Preprocessing/inprocessing [JHB12, HJL+15]

– Clause minimization: LBD-based and UP-based [AS09, LLX+17]

38 / 177

Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

39 / 177

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners

– UIPs mimic unique sensitization points (USPs), from testing
– Analysis of conflicts organized by decision levels

I In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,
etc.

I Need to find ways to exploit the circuit’s internal structure
I Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
– Clauses are learned locally to each decision level
– UIPs further localize the learned clauses
– GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
– Most practical problem instances exhibit the structure GRASP-like

clause learning is most effective on

I Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]

40 / 177

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners

– UIPs mimic unique sensitization points (USPs), from testing
– Analysis of conflicts organized by decision levels

I In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,
etc.

I Need to find ways to exploit the circuit’s internal structure
I Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
– Clauses are learned locally to each decision level
– UIPs further localize the learned clauses
– GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
– Most practical problem instances exhibit the structure GRASP-like

clause learning is most effective on

I Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]

40 / 177

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners

– UIPs mimic unique sensitization points (USPs), from testing
– Analysis of conflicts organized by decision levels

I In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,
etc.

I Need to find ways to exploit the circuit’s internal structure
I Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
– Clauses are learned locally to each decision level
– UIPs further localize the learned clauses
– GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
– Most practical problem instances exhibit the structure GRASP-like

clause learning is most effective on

I Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]

40 / 177

Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

41 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si)
– Any learned clause contains explanation given working assumptions

(more next)

42 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si)
– Any learned clause contains explanation given working assumptions

(more next)

42 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si)
– Any learned clause contains explanation given working assumptions

(more next)

42 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1

– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si)
– Any learned clause contains explanation given working assumptions

(more next)

42 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)

– To remove clause: add unit (si)
– Any learned clause contains explanation given working assumptions

(more next)

42 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si)

– Any learned clause contains explanation given working assumptions
(more next)

42 / 177

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si)
– Any learned clause contains explanation given working assumptions

(more next)

42 / 177

An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables

• Soft clauses S: add indicator variables {s1, s2, s3, s4}

• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver
handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

43 / 177

An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables

• Soft clauses S: add indicator variables {s1, s2, s3, s4}
• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver

handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

43 / 177

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S, given B

44 / 177

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S, given B

44 / 177

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S, given B
44 / 177

Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

45 / 177

Overview of PySAT

[IMM18]

PySAT modules

solvers

module
cardenc

module
formula

module

PySAT API

• Open source, available on github

• Comprehensive list of SAT solvers

• Comprehensive list of cardinality encodings

• Fairly comprehensive documentation

• Several use cases

46 / 177

Overview of PySAT

[IMM18]

PySAT modules

solvers

module
cardenc

module
formula

module

PySAT API

• Open source, available on github

• Comprehensive list of SAT solvers

• Comprehensive list of cardinality encodings

• Fairly comprehensive documentation

• Several use cases

46 / 177

Overview of PySAT

[IMM18]

PySAT modules

solvers

module
cardenc

module
formula

module

PySAT API

• Open source, available on github

• Comprehensive list of SAT solvers

• Comprehensive list of cardinality encodings

• Fairly comprehensive documentation

• Several use cases
46 / 177

Available solvers

Solver Version

Glucose 3.0

Glucose 4.1

Lingeling bbc-9230380-160707

Minicard 1.2

Minisat 2.2 release

Minisat GitHub version

• Solvers can either be used incrementally or non-incrementally

• Tools can use multiple solvers, e.g. for hitting set dualization or
CEGAR-based QBF solving

• URL:
https://pysathq.github.io/docs/html/api/solvers.html

47 / 177

https://pysathq.github.io/docs/html/api/solvers.html

Formula manipulation

Features

CNF & Weighted CNF (WCNF)

Read formulas from file/string

Write formulas to file

Append clauses to formula

Negate CNF formulas

Translate between CNF and WCNF

ID manager

• URL:
https://pysathq.github.io/docs/html/api/formula.html

48 / 177

https://pysathq.github.io/docs/html/api/formula.html

Available cardinality encodings

Name Type

pairwise AtMost1

bitwise AtMost1

ladder AtMost1

sequential counter AtMostk

sorting network AtMostk

cardinality network AtMostk

totalizer AtMostk

mtotalizer AtMostk

kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL:
https://pysathq.github.io/docs/html/api/card.html

49 / 177

https://pysathq.github.io/docs/html/api/card.html

Available cardinality encodings – more later

Name Type

pairwise AtMost1

bitwise AtMost1

ladder AtMost1

sequential counter AtMostk

sorting network AtMostk

cardinality network AtMostk

totalizer AtMostk

mtotalizer AtMostk

kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL:
https://pysathq.github.io/docs/html/api/card.html

49 / 177

https://pysathq.github.io/docs/html/api/card.html

Installation & info

• Installation:
$ [sudo] pip2|pip3 install python-sat

• Website: https://pysathq.github.io/

50 / 177

https://pysathq.github.io/

Basic interface – Python3

>>> from pysat.card import *

>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)

>>> print(am1.clauses)

[[-1, 2], [-1, -3], [2, -3]]

>>>

>>> from pysat.solvers import Solver

>>> with Solver(name=’m22’, bootstrap_with=am1.clauses) as s:

... if s.solve(assumptions=[1, 2, 3]) == False:

... print(s.get_core())

[3, 1]

51 / 177

Part 2

Problem Modeling for SAT

52 / 177

Quiz – solving Sudoku (first attempt)

53 / 177

Quiz – solving Sudoku (first attempt)

• How to solve Sudoku with constraints / SAT?

54 / 177

Quiz – solving Sudoku (first attempt)

• How to solve Sudoku with constraints / SAT?

54 / 177

A solution in Prolog CLPFD

:− use modu le (l i b r a r y (c l p f d)) .

sudoku (Rows) :−
l ength (Rows , 9) ,
m a p l i s t (s a m e l e n g t h (Rows) , Rows) ,
append (Rows , Vs) ,
Vs i n s 1 . . 9 ,
m a p l i s t (a l l d i s t i n c t , Rows) ,
t r a n s p o s e (Rows , Columns) ,
m a p l i s t (a l l d i s t i n c t , Columns) ,
Rows = [As , Bs , Cs , Ds , Es , Fs , Gs , Hs , I s] ,
b l o c k s (As , Bs , Cs) ,
b l o c k s (Ds , Es , Fs) ,
b l o c k s (Gs , Hs , I s) .

b l o c k s ([] , [] , []) .
b l o c k s ([N1 , N2 , N3 | Ns1] , [N4 , N5 , N6 | Ns2] , [N7 , N8 , N9 | Ns3]) :−

a l l d i s t i n c t ([N1 , N2 , N3 , N4 , N5 , N6 , N7 , N8 , N9]) ,
b l o c k s (Ns1 , Ns2 , Ns3) .

55 / 177

A solution with Minizinc

i n t : S ;
i n t : N = S ∗ S ;
a r r a y [1 . . N , 1 . . N] o f v a r 1 . . N: p u z z l e ;
i n c l u d e ” a l l d i f f e r e n t . mzn” ;

% A l l c e l l s i n a row , i n a column , and i n a s u b s q u a r e a r e
d i f f e r e n t .

c o n s t r a i n t
f o r a l l (i i n 1 . . N) (a l l d i f f e r e n t (j i n 1 . . N) (p u z z l e [i , j])) /\
f o r a l l (j i n 1 . . N) (a l l d i f f e r e n t (i i n 1 . . N) (p u z z l e [i , j])) /\
f o r a l l (i , j i n 1 . . S)

(a l l d i f f e r e n t (p , q i n 1 . . S) (p u z z l e [S∗(i −1)+p ,
S∗(j −1)+q])) ;

s o l v e s a t i s f y ;

output [” sudoku :\ n”] ++
[show (p u z z l e [i , j]) ++

i f j = N then
i f i mod S = 0 /\ i < N then ”\n\n” e l s e ”\n” e n d i f

e l s e
i f j mod S = 0 then ” ” e l s e ” ” e n d i f

e n d i f
| i , j i n 1 . . N] ;

56 / 177

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:

– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

57 / 177

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:
– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

57 / 177

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:
– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

57 / 177

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:
– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

57 / 177

Solving Sudoku – propositional logic – variables

• Modeling with propositional variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j,k ∈ {0, 1}, i , j , k ∈ {1, . . . , 9}

58 / 177

Solving Sudoku – propositional logic – constraints

• Value in each cell is valid:

– For i , j ∈ {1, . . . , 9}: ∑9
k=1 vi,j,k = 1

• Each value used exactly once in each row:

– For i ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
j=1 vi,j,k = 1

• Each value used exactly once in each column:

– For j ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
i=1 vi,j,k = 1

• Each value used exactly once in each 3× 3 sub-grid:

– For i , j ∈ {0, 1, 2}, k ∈ {1, . . . , 9}:∑3
r=1

∑3
s=1 v3i+r ,3j+s,k = 1

• Q: how to (propositionally) encode Equals1 constraints?

59 / 177

Solving Sudoku – propositional logic – constraints

• Value in each cell is valid:

– For i , j ∈ {1, . . . , 9}: ∑9
k=1 vi,j,k = 1

• Each value used exactly once in each row:

– For i ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
j=1 vi,j,k = 1

• Each value used exactly once in each column:

– For j ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
i=1 vi,j,k = 1

• Each value used exactly once in each 3× 3 sub-grid:

– For i , j ∈ {0, 1, 2}, k ∈ {1, . . . , 9}:∑3
r=1

∑3
s=1 v3i+r ,3j+s,k = 1

• Q: how to (propositionally) encode Equals1 constraints?
59 / 177

Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .

60 / 177

Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .

60 / 177

Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .

60 / 177

Sudoku with PySAT

Demo

61 / 177

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

62 / 177

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution

– Operator elimination; De Morgan’s laws, remove double negations
& apply distributivity

– Worst-case exponential
– Set of variables constant

• Tseitin’s translation & variants (next)

– New variables added
– Satisfiability is preserved
– Linear size transformation

63 / 177

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution

– Operator elimination; De Morgan’s laws, remove double negations
& apply distributivity

– Worst-case exponential
– Set of variables constant

• Tseitin’s translation & variants (next)

– New variables added
– Satisfiability is preserved
– Linear size transformation

63 / 177

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution

– Operator elimination; De Morgan’s laws, remove double negations
& apply distributivity

– Worst-case exponential
– Set of variables constant

• Tseitin’s translation & variants (next)

– New variables added
– Satisfiability is preserved
– Linear size transformation

63 / 177

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution

– Operator elimination; De Morgan’s laws, remove double negations
& apply distributivity

– Worst-case exponential
– Set of variables constant

• Tseitin’s translation & variants (next)

– New variables added
– Satisfiability is preserved
– Linear size transformation

63 / 177

Representing Boolean formulas / circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas

– Can use any logic connective: ∧,∨,¬,→,↔, . . .
• Can represent circuits/formulas as CNF formulas [Tse68, PG86]

– For each (simple) gate, CNF formula encodes the consistent
assignments to the gate’s inputs and output

I Given z = OP(x , y), represent in CNF z ↔ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

Ft = (r̄ ∨ t) ∧ (s̄ ∨ t) ∧ (r ∨ s ∨ t̄)

NAND

OR

a
b

c

r
s t

64 / 177

Representing Boolean formulas / circuits II

NAND
a
b

c

ab
c 00 01 11 10

0

1

1

1 1 1

0 0 0

0

a b c Fc(a,b,c)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

65 / 177

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.

66 / 177

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.

66 / 177

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.
66 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0

, i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0

, i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0

, i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0 , i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1 , i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1 , i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1 , i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.

67 / 177

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

68 / 177

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

69 / 177

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

69 / 177

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

69 / 177

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ

– Soft constraints: (xj), each with cost cj

69 / 177

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

69 / 177

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

70 / 177

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)

71 / 177

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)

71 / 177

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)

71 / 177

Equals1, AtLeast1 & AtMost1 constraints

• ∑n
j=1 xj = 1: encode with (

∑n
j=1 xj ≤ 1) ∧ (

∑n
j=1 xj ≥ 1)

• ∑n
j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

• ∑n
j=1 xj ≤ 1 encode with:

– Pairwise encoding

I Clauses: O(n2) ; No auxiliary variables

– Sequential counter [Sin05]

I Clauses: O(n) ; Auxiliary variables: O(n)

– Bitwise encoding [FP01, Pre07]

I Clauses: O(n log n) ; Auxiliary variables: O(log n)

– ...

72 / 177

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

73 / 177

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

a→ b̄ ∧ c̄ ∧ d̄ =⇒ (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄)
b → c̄ ∧ d̄ ∧ ā =⇒ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄)∧(b̄ ∨ ā)
c → d̄ ∧ ā ∧ b̄ =⇒ (c̄ ∨ d̄)∧(c̄ ∨ ā) ∧ (c̄ ∨ b̄)
d → ā ∧ b̄ ∧ c̄ =⇒ (d̄ ∨ ā) ∧ (d̄ ∨ b̄) ∧ (d̄ ∨ c̄)

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

73 / 177

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

a→ b̄ ∧ c̄ ∧ d̄ =⇒ (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄)
b → c̄ ∧ d̄ ∧ ā =⇒ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄)∧(b̄ ∨ ā)
c → d̄ ∧ ā ∧ b̄ =⇒ (c̄ ∨ d̄)∧(c̄ ∨ ā) ∧ (c̄ ∨ b̄)
d → ā ∧ b̄ ∧ c̄ =⇒ (d̄ ∨ ā) ∧ (d̄ ∨ b̄) ∧ (d̄ ∨ c̄)

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

73 / 177

Sequential counter encoding

• Encode
∑n

j=1 xj ≤ 1 with sequential counter:

(x̄1 ∨ s1) ∧ (x̄n ∨ s̄n−1)∧∧
1<i<n ((x̄i ∨ si) ∧ (s̄i−1 ∨ si) ∧ (x̄i ∨ s̄i−1))

– If some xj = 1, then all si variables must be assigned

I si = 1 for i ≥ j , and so xi = 0 for i > j
I si = 0 for i < j , and so xi = 0 for i < j
I Thus, all other xi variables must take value 0

– If all xj = 0, can find consistent assignment to si variables

– O(n) clauses ; O(n) auxiliary variables

74 / 177

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

75 / 177

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0

x1 0 00
x2 1 01
x3 2 10

75 / 177

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0

x1 0 00
x2 1 01
x3 2 10

(x̄1 ∨ v̄1) ∧ (x̄1 ∨ v̄0)
(x̄2 ∨ v̄1) ∧ (x̄2 ∨ v0)
(x̄3 ∨ v1) ∧ (x̄3 ∨ v̄0)

75 / 177

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0

x1 0 00
x2 1 01
x3 2 10

(x̄1 ∨ v̄1) ∧ (x̄1 ∨ v̄0)
(x̄2 ∨ v̄1) ∧ (x̄2 ∨ v0)
(x̄3 ∨ v1) ∧ (x̄3 ∨ v̄0)

75 / 177

General cardinality constraints

• General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)

– Operational encoding [War98]

I Clauses/Variables: O(n)
I Does not ensure arc-consistency

– Generalized pairwise

I Clauses: O(2n) ; no auxiliary variables

– Sequential counters [Sin05]

I Clauses/Variables: O(n k)

– BDDs [ES06]

I Clauses/Variables: O(n k)

– Sorting networks [Bat68, ES06]

I Clauses/Variables: O(n log2 n)

– Cardinality Networks: [ANOR09, ANOR11]

I Clauses/Variables: O(n log2 k)

– Pairwise Cardinality Networks: [CZ10]

– ...

76 / 177

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

77 / 177

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

77 / 177

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

77 / 177

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

77 / 177

Another example

• Example: a + b + c + d + e ≤ 2

• Encoding will contain C 5
3 = 10 clauses:

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b → ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c → ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d → ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c → ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d → ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d → ē =⇒ (c̄ ∨ d̄ ∨ ē)

78 / 177

Sequential counter – revisited I

• Encode
∑n

j=1 xj ≤ k with sequential counter:

x1 x2 xn

v1 v2 vn

s1,1

s1,2

s1,k s2,k

s2,2

s2,1

sn�1,k

sn�1,2

sn�1,1

• Equations for each block 1 < i < n , 1 < j < k :

si =
∑i

j=1 xj

si represented in unary

si ,1 = si−1,1 ∨ xi
si ,j = si−1,j ∨ si−1,j−1 ∧ xi
vi = (si−1,k ∧ xi) = 0

79 / 177

Sequential counter – revisited II

• CNF formula for
∑n

j=1 xj ≤ k :

– Assume: k > 0 ∧ n > 1

– Indeces: 1 < i < n , 1 < j ≤ k

(¬x1 ∨ x1,1)
(¬s1,j)
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)
(¬xi ∨ ¬si−1,k)
(¬xn ∨ ¬sn−1,k)

• O(n k) clauses & variables

80 / 177

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [War98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANO+12]

I Clauses & aux variables: O(n3 log(amax))

– ...

81 / 177

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [War98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANO+12]

I Clauses & aux variables: O(n3 log(amax))

– ...

81 / 177

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [War98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANO+12]

I Clauses & aux variables: O(n3 log(amax))

– ...

81 / 177

Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3
• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

82 / 177

Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3
• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

ITE
1 0

s

ba

z

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

01 1 0

0 1

1

x1

x2

x3

x2

x3

82 / 177

Encoding PB constraints with BDDs II

• Encode 3x1 + 3x2 + x3 ≤ 3

• Extract ITE-based circuit from BDD

• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3

83 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

84 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint

I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

84 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

84 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

84 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

– Let x2 = 0
– Either constraint can still be satisfied, but not both

84 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0

– Either constraint can still be satisfied, but not both

84 / 177

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

84 / 177

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

85 / 177

CSP constraints

• Many possible encodings:

– Direct encoding [dK89, GJ96, Wal00]

– Log encoding [Wal00]

– Support encoding [Kas90, Gen02]

– Log-Support encoding [Gav07]

– Order encoding for finite linear CSPs [TTKB09]

86 / 177

Direct encoding for CSP w/ binary constraints

• Variable xi with domain Di , with mi = |Di |
• Constraints are relations over domains of variables

– For a constraint over x1, . . . , xk , define relation R ⊆ D1 × · · · × Dk

– Need to encode elements not in the relation
– For a binary relation, use set of binary clauses, one for each element

not in R

• Represent values of xi with Boolean variables xi ,1, . . . , xi ,mi

• Require
∑mi

k=1 xi ,k = 1

– Suffices to require
∑mi

k=1 xi,k ≥ 1 [Wal00]

• If the pair of assignments xi = vi ∧ xj = vj is not allowed, add
binary clause (x̄i ,vi ∨ x̄j ,vj)

87 / 177

Additional topics

• Encoding problems to SAT is ubiquitous:

– Many more encodings of finite domain CSP into SAT

– Encodings of Answer Set Programming (ASP) into SAT

– Eager SMT solving

– Theorem provers iteratively encode problems into SAT

– Model finders interatively encode problems into SAT

– ...

88 / 177

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

89 / 177

Minimum vertex cover

• The problem:

– Graph G = (V ,E)
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}

90 / 177

Minimum vertex cover

• The problem:

– Graph G = (V ,E)
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}

Min vertex cover: {v1}

90 / 177

Minimum vertex cover

• The problem:

– Graph G = (V ,E)
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}

90 / 177

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

91 / 177

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

v1

v2

v3

v4

minimize x1 + x2 + x3 + x4

subject to (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

91 / 177

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

v1

v2

v3

v4

minimize x1 + x2 + x3 + x4

subject to (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

91 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

92 / 177

The N-Queens problem I

• The N-Queens Problem:
Place N queens on a N ×N board, such that no two queens attack
each other

• Example for a 5× 5 board:

Q

Q

Q

Q

Q

93 / 177

The N-Queens problem II

• xij : 1 if queen placed in position (i , j); 0 otherwise

• Each row must have exactly one queen:

1 ≤ i ≤ N,
N∑
j=1

xij = 1

• Each column must have exactly one queen:

1 ≤ j ≤ N,
N∑
i=1

xij = 1

• Also, need to define constraints on diagonals...

94 / 177

The N-Queens problem III

• Each diagonal can have at most one queen:

↘ ↙ ↙ ↙
↘ ↖
↘ ↖
↘ ↖
↗ ↗ ↗ ↗

i = 1, 2 ≤ j < N,

j−1∑
k=0

xi+k j−k ≤ 1

i = N, 1 ≤ j < N,

N−j∑
k=0

xi−k j+k ≤ 1

j = 1, 1 ≤ i < N,
N−i∑
k=0

xi+k j+k ≤ 1

j = N, 2 ≤ i < N,
i−1∑
k=0

xi−k j−k ≤ 1

95 / 177

Design debugging

[SMV+07]

Correct circuit

AND

AND

r
s

y

z

Input stimuli: 〈r , s〉 = 〈0, 1〉
Valid output: 〈y , z〉 = 〈0, 0〉

Faulty circuit

AND
r
s

y

zOR

Input stimuli: 〈r , s〉 = 〈0, 1〉
Invalid output: 〈y , z〉 = 〈0, 0〉

• The model:
– Hard clauses: Input and output values
– Soft clauses: CNF representation of circuit

• The problem:
– Maximize number of satisfied clauses (i.e. circuit gates)

96 / 177

Software package upgrades

[MBC+06, TSJL07, AL08, ALS09, ABL+10b]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci)

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

97 / 177

Software package upgrades

[MBC+06, TSJL07, AL08, ALS09, ABL+10b]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci)

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

ϕH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

ϕS = {(x1), (x2), (x3), (x4)}
97 / 177

The knapsack problem

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

98 / 177

The knapsack problem

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

98 / 177

The knapsack problem

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

98 / 177

The knapsack problem

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

98 / 177

Part 3

Problem Solving with SAT Oracles

99 / 177

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

100 / 177

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

100 / 177

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

100 / 177

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

100 / 177

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

100 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

Function Problems

All solutions Enumeration Problems

solutions Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions

Enumeration Problems

solutions Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions

Counting Problems

101 / 177

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

101 / 177

... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...

102 / 177

Oracle-based problem solving – ideal scenario

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

103 / 177

Oracle-based problem solving – in some settings

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

104 / 177

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

105 / 177

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

105 / 177

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

105 / 177

Selection of topics

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction
106 / 177

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

107 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

108 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

108 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

108 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

108 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

108 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

108 / 177

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
108 / 177

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?

109 / 177

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?

109 / 177

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?

109 / 177

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?

109 / 177

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?

109 / 177

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?

109 / 177

Why it matters?

• Analysis of over-constrained systems

– Model-based diagnosis [Rei87]

I Software fault localization
I Spreadsheet debugging
I Debugging relational specifications (e.g. Alloy)
I Type error debugging
I Axiom pinpointing in description logics
I ...

– Model checking of software & hardware systems
– Inconsistency measurement
– Minimal models; MinCost SAT; ...
– ...

• Find minimal relaxations to recover consistency

– But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency

– But also minimum explanations of inconsistency, eg. Smallest MUS

110 / 177

Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c 6∈ MUS

return M // Final M is MUS

end

• Number of oracles calls: O(m) [CD91, BDTW93]

111 / 177

Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c from M

return M // Final M is MUS

end

• Number of oracles calls: O(m) [CD91, BDTW93]

111 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

112 / 177

Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference

Insertion-based O(k m) [dSNP88, vMW08]

MCS MUS O(k m) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k + k log(m
k)) [Jun04]

Progression O(k log(1 + m
k)) [MJB13]

• Note: Lower bound in FPNP
|| and upper bound in FPNP

[CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation

113 / 177

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

114 / 177

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .

115 / 177

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .

115 / 177

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .

115 / 177

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .

115 / 177

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .

115 / 177

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .

115 / 177

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

116 / 177

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

116 / 177

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

116 / 177

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

116 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??

– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

117 / 177

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative
MHS approaches are the most effective [MaxSAT14]

118 / 177

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative
MHS approaches are the most effective [MaxSAT14]

118 / 177

Core-guided solver performance – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]
119 / 177

Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]
120 / 177

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT

121 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1
(i.e. cost = 2)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

122 / 177

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT

123 / 177

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk , k = 1, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk , k=2, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

124 / 177

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT

125 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})?

• Terminate & return 2

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

126 / 177

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

126 / 177

MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10a, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution
– ...

127 / 177

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

128 / 177

Example: naive (deletion) MUS extraction

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c 6∈ MUS

return M // Final M is MUS

end

• Number of predicate tests: O(m) [CD91, BDTW93]

129 / 177

Naive MUS extraction I

def main () :
c n f = CNF(f r o m f i l e=a r g v [1]) # c r e a t e a CNF o b j e c t from f i l e
(rnv , assumps) = add assumps (c n f)

o r a c l e = S o l v e r (name= ’ g3 ’ , b o o t s t r a p w i t h=c n f . c l a u s e s)

mus = f i n d m u s (assumps , o r a c l e)
mus = [r e f − r n v f o r r e f i n mus]
p r i n t (”MUS: ” , mus)

i f n a m e == ” m a i n ” :
main ()

130 / 177

Naive MUS extraction II

def add assumps (c n f) :
r n v = topv = c n f . nv
assumps = [] # l i s t o f a s s u m p t i o n s to use
f o r i i n range (l e n (c n f . c l a u s e s)) :

topv += 1
assumps . append (topv) # r e g i s t e r l i t e r a l
c n f . c l a u s e s [i] . append(− topv) # e x t e n d c l a u s e w i t h l i t e r a l

c n f . nv = c n f . nv + l e n (assumps) # update # o f v a r s
r e t u r n rnv , assumps

def main () :
c n f = CNF(f r o m f i l e=a r g v [1]) # c r e a t e a CNF o b j e c t from f i l e
(rnv , assumps) = add assumps (c n f)

o r a c l e = S o l v e r (name= ’ g3 ’ , b o o t s t r a p w i t h=c n f . c l a u s e s)

mus = f i n d m u s (assumps , o r a c l e)
mus = [r e f − r n v f o r r e f i n mus]
p r i n t (”MUS: ” , mus)

i f n a m e == ” m a i n ” :
main ()

131 / 177

Naive MUS extraction III

from s y s import a r g v

from p y s a t . f o r m u l a import CNF
from p y s a t . s o l v e r s import S o l v e r

def f i n d m u s (assmp , o r a c l e) :
i = 0
w h i l e i < l e n (assmp) :

t s = assmp [: i] + assmp [(i + 1) :]
i f not o r a c l e . s o l v e (a s s u m p t i o n s=t s) :

assmp = t s
e l s e :

i += 1
r e t u r n assmp

132 / 177

Naive MUS extraction III

from s y s import a r g v

from p y s a t . f o r m u l a import CNF
from p y s a t . s o l v e r s import S o l v e r

def f i n d m u s (assmp , o r a c l e) :
i = 0
w h i l e i < l e n (assmp) :

t s = assmp [: i] + assmp [(i + 1) :]
i f not o r a c l e . s o l v e (a s s u m p t i o n s=t s) :

assmp = t s
e l s e :

i += 1
r e t u r n assmp

Demo

132 / 177

A less naive MUS extractor

def c l s e t r e f i n e (assmp , o r a c l e) :
assmp = s o r t e d (assmp)
w h i l e True :

o r a c l e . s o l v e (a s s u m p t i o n s=assmp)
t s = s o r t e d (o r a c l e . g e t c o r e ())
i f t s == assmp :

break
assmp = t s

r e t u r n assmp
. . .

def main () :
c n f = CNF(f r o m f i l e=a r g v [1]) # c r e a t e a CNF o b j e c t from f i l e
(rnv , assumps) = add assumps (c n f)

o r a c l e = S o l v e r (name= ’ g3 ’ , b o o t s t r a p w i t h=c n f . c l a u s e s)

assumps = c l s e t r e f i n e (assumps , o r a c l e)
mus = f i n d m u s (assumps , o r a c l e)
mus = [r e f − r n v f o r r e f i n mus]
p r i n t (”MUS: ” , mus)

i f n a m e == ” m a i n ” :
main ()

133 / 177

Encoding sudoku

c l a s s SudokuEncoding (CNF, o b j e c t) :
def i n i t (s e l f) :

i n i t i a l i z i n g CNF ’ s i n t e r n a l p a r a m e t e r s
super (SudokuEncoding , s e l f) . i n i t ()
s e l f . v p o o l = IDPool ()

a t l e a s t one v a l u e i n each c e l l
f o r i , j i n i t e r t o o l s . p r o d u c t (range (9) , range (9)) :

s e l f . append ([s e l f . v a r (i , j , v a l) f o r v a l i n range (9)])
a t most one v a l u e i n each row
f o r i i n range (9) :

f o r v a l i n range (9) :
f o r j1 , j 2 i n i t e r t o o l s . c o m b i n a t i o n s (range (9) , 2) :

s e l f . append ([− s e l f . v a r (i , j1 , v a l) , −s e l f . v a r (i , j2 , v a l)])
a t most one v a l u e i n each column
f o r j i n range (9) :

f o r v a l i n range (9) :
f o r i 1 , i 2 i n i t e r t o o l s . c o m b i n a t i o n s (range (9) , 2) :

s e l f . append ([− s e l f . v a r (i1 , j , v a l) , −s e l f . v a r (i2 , j , v a l)])
a t most one v a l u e i n each s q u a r e
f o r v a l i n range (9) :

f o r i i n range (3) :
f o r j i n range (3) :

s u b g r i d = i t e r t o o l s . p r o d u c t (range (3∗ i , 3∗ i +3) , range (3∗ j , 3∗ j +3))
f o r c i n i t e r t o o l s . c o m b i n a t i o n s (s u b g r i d , 2) :

s e l f . append ([− s e l f . v a r (c [0] [0] , c [0] [1] , v a l) ,
−s e l f . v a r (c [1] [0] , c [1] [1] , v a l)])

def v a r (s e l f , i , j , v) :
r e t u r n s e l f . v p o o l . i d (t u p l e ([i + 1 , j + 1 , v + 1]))

def c e l l (s e l f , v a r) :
r e t u r n s e l f . v p o o l . o b j (v a r)

134 / 177

A prototype sudoku game

135 / 177

A prototype sudoku game

135 / 177

A prototype sudoku game

Demo

135 / 177

Part 4

Sample of Applications

136 / 177

Flagship applications

• Bounded (& unbounded) model checking

• Automated planning

• Software model checking

• Package management

• Design debugging

• Haplotyping

137 / 177

CDCL SAT is the engines’ engine

Engines using
SAT engines

Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...

138 / 177

CDCL SAT is ubiquitous in problem solving

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

139 / 177

Recent applications

• Two-level logic minimization with SAT [IPM15]

– Reimplementation of Quine-McCluskey with SAT oracles

• Maximum cliques with SAT [IMM17]

• Explainable decision sets [IPNM18]

– Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

– Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

– On-demand extraction of explanations for any ML model

140 / 177

Recent applications

• Two-level logic minimization with SAT [IPM15]

– Reimplementation of Quine-McCluskey with SAT oracles

• Maximum cliques with SAT [IMM17]

• Explainable decision sets [IPNM18]

– Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

– Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

– On-demand extraction of explanations for any ML model

140 / 177

Recent applications

• Two-level logic minimization with SAT [IPM15]

– Reimplementation of Quine-McCluskey with SAT oracles

• Maximum cliques with SAT [IMM17]

• Explainable decision sets [IPNM18]

– Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

– Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

– On-demand extraction of explanations for any ML model

140 / 177

Recent applications

• Two-level logic minimization with SAT [IPM15]

– Reimplementation of Quine-McCluskey with SAT oracles

• Maximum cliques with SAT [IMM17]

• Explainable decision sets [IPNM18]

– Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

– Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

– On-demand extraction of explanations for any ML model

140 / 177

Recent applications

• Two-level logic minimization with SAT [IPM15]

– Reimplementation of Quine-McCluskey with SAT oracles

• Maximum cliques with SAT [IMM17]

• Explainable decision sets [IPNM18]

– Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

– Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

– On-demand extraction of explanations for any ML model

140 / 177

Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G

141 / 177

Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G

141 / 177

Abduction-based explanations

[INMS19]

• Positive:

– General approach, applicable to any ML model
represented as a set of constraints

– Ability to explain predictions of NNs

• Negative:

– NN sizes are fairly small, i.e. tens of neurons
– Best results with ILP-based approach

I SMT/SAT models currently ineffective
I But, algorithms inspired SAT-based solutions

142 / 177

Outline

Solving MaxClique with SAT

143 / 177

Modeling MaxClique with SAT

• Given (undirected) graph, find largest complete subgraph

• Main constraint:

Given u, v ∈ V :
If (u, v) 6∈ E , then one must not have both u and v in
the maximum-size clique

• Associate Boolean xu with u ∈ V

• Main goal:

Assign 1 to largest set of variables that are consistent
with constraint

– E.g. use MaxSAT

144 / 177

Modeling MaxClique with SAT

• Given (undirected) graph, find largest complete subgraph

• Main constraint:

Given u, v ∈ V :
If (u, v) 6∈ E , then one must not have both u and v in
the maximum-size clique

• Associate Boolean xu with u ∈ V

• Main goal:

Assign 1 to largest set of variables that are consistent
with constraint

– E.g. use MaxSAT

144 / 177

Modeling MaxClique with SAT

• Given (undirected) graph, find largest complete subgraph

• Main constraint:

Given u, v ∈ V :
If (u, v) 6∈ E , then one must not have both u and v in
the maximum-size clique

• Associate Boolean xu with u ∈ V

• Main goal:

Assign 1 to largest set of variables that are consistent
with constraint

– E.g. use MaxSAT

144 / 177

An example

Construct F = 〈H,S〉s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

An example

Construct F = 〈H,S〉 s.t.

{
H , {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !

145 / 177

But the size of EC can be problematic...

Instance |V| |E| |E|C
comm-n10000 10000 10000 49995000

ca-AstroPh 18772 396160 175807218

ca-citeseer 227322 814136 25836945367

ca-coauthors-dblp 540488 15245731 146048663585

ca-CondMat 23133 186936 267392475

ca-dblp-2010 226415 716462 25631272858

ca-dblp-2012 317082 1049868 50269606035

ca-HepPh 12008 237010 71865026

ca-HepTh 9877 51971 48730532

ca-MathSciNet 332689 820644 55340331061

ia-email-EU 32430 54397 525814268

ia-reality-call 6809 9484 23175161

ia-retweet-pol 18470 61157 170518528

ia-wiki-Talk 92117 360767 4242456136

rt-pol 18470 61157 170518528

rt barackobama 9631 9826 46373070

soc-epinions 63947 606512 2044034866

soc-gplus 23628 39242 279113764

tech-as-caida2007 26477 53383 350475620

tech-internet-as 40164 85123 806508407

tech-pgp 10680 24340 57012200

tech-WHOIS 7476 56943 27892083

web-arabic-2005 163598 1747269 13380487332

web-baidu-baike-related 415641 3284387 86375643874

web-it-2004 509338 7178413 129705675378

web-NotreDame 325729 1497134 53048356451

web-sk-2005 121422 334419 7371377334
146 / 177

But the size of EC can be problematic...

Instance |V| |E| |E|C
comm-n10000 10000 10000 49995000

ca-AstroPh 18772 396160 175807218

ca-citeseer 227322 814136 25836945367

ca-coauthors-dblp 540488 15245731 146048663585

ca-CondMat 23133 186936 267392475

ca-dblp-2010 226415 716462 25631272858

ca-dblp-2012 317082 1049868 50269606035

ca-HepPh 12008 237010 71865026

ca-HepTh 9877 51971 48730532

ca-MathSciNet 332689 820644 55340331061

ia-email-EU 32430 54397 525814268

ia-reality-call 6809 9484 23175161

ia-retweet-pol 18470 61157 170518528

ia-wiki-Talk 92117 360767 4242456136

rt-pol 18470 61157 170518528

rt barackobama 9631 9826 46373070

soc-epinions 63947 606512 2044034866

soc-gplus 23628 39242 279113764

tech-as-caida2007 26477 53383 350475620

tech-internet-as 40164 85123 806508407

tech-pgp 10680 24340 57012200

tech-WHOIS 7476 56943 27892083

web-arabic-2005 163598 1747269 13380487332

web-baidu-baike-related 415641 3284387 86375643874

web-it-2004 509338 7178413 129705675378

web-NotreDame 325729 1497134 53048356451

web-sk-2005 121422 334419 7371377334

|EC | = |E |×(|E |−1)
2

−|E |

146 / 177

But the size of EC can be problematic...

Instance |V| |E| |E|C
comm-n10000 10000 10000 49995000

ca-AstroPh 18772 396160 175807218

ca-citeseer 227322 814136 25836945367

ca-coauthors-dblp 540488 15245731 146048663585

ca-CondMat 23133 186936 267392475

ca-dblp-2010 226415 716462 25631272858

ca-dblp-2012 317082 1049868 50269606035

ca-HepPh 12008 237010 71865026

ca-HepTh 9877 51971 48730532

ca-MathSciNet 332689 820644 55340331061

ia-email-EU 32430 54397 525814268

ia-reality-call 6809 9484 23175161

ia-retweet-pol 18470 61157 170518528

ia-wiki-Talk 92117 360767 4242456136

rt-pol 18470 61157 170518528

rt barackobama 9631 9826 46373070

soc-epinions 63947 606512 2044034866

soc-gplus 23628 39242 279113764

tech-as-caida2007 26477 53383 350475620

tech-internet-as 40164 85123 806508407

tech-pgp 10680 24340 57012200

tech-WHOIS 7476 56943 27892083

web-arabic-2005 163598 1747269 13380487332

web-baidu-baike-related 415641 3284387 86375643874

web-it-2004 509338 7178413 129705675378

web-NotreDame 325729 1497134 53048356451

web-sk-2005 121422 334419 7371377334

|EC | = |E |×(|E |−1)
2

−|E |

Unrealistic to
model with SAT
on sparse graphs

146 / 177

How to reduce the encoding size?

• Main hurdle:

SAT-based approaches based on GC = (V ,EC)
will not scale...
And G = (V ,E) is much smaller than GC = (V ,EC)

• Can we model MaxClique using solely G?

147 / 177

How to reduce the encoding size?

• Main hurdle:

SAT-based approaches based on GC = (V ,EC)
will not scale...
And G = (V ,E) is much smaller than GC = (V ,EC)

• Can we model MaxClique using solely G?

147 / 177

Another take at solving MaxClique with SAT

• Revisit the original decision problem:

Given G = (V ,E), is there a clique of size K?

• First, one must pick exactly K vertices:∑
u∈V

xu = K

• And second, if a vertex u ∈ V is picked (i.e. xu = 1), then
K − 1 of its neighbours must also be picked!

xu →

 ∑
v∈Adj(u)

xv = K − 1

148 / 177

Another take at solving MaxClique with SAT

• Revisit the original decision problem:

Given G = (V ,E), is there a clique of size K?

• First, one must pick exactly K vertices:∑
u∈V

xu = K

• And second, if a vertex u ∈ V is picked (i.e. xu = 1), then
K − 1 of its neighbours must also be picked!

xu →

 ∑
v∈Adj(u)

xv = K − 1

148 / 177

Another take at solving MaxClique with SAT

• Revisit the original decision problem:

Given G = (V ,E), is there a clique of size K?

• First, one must pick exactly K vertices:∑
u∈V

xu = K

• And second, if a vertex u ∈ V is picked (i.e. xu = 1), then
K − 1 of its neighbours must also be picked!

xu →

 ∑
v∈Adj(u)

xv = K − 1

148 / 177

Part 5

A Glimpse of the Future

149 / 177

What next?

• Oracle-based computing

– Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting

• Arms race for proof systems stronger than resolution/clause
learning

– Cutting Planes (CP)
– Extended Resolution (and equivalent)

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML

– Deep NNs operate as black-boxes
– Often important to provide small/intuitive explanations for

predictions made

• ...

150 / 177

What next?

• Oracle-based computing

– Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting

• Arms race for proof systems stronger than resolution/clause
learning

– Cutting Planes (CP)
– Extended Resolution (and equivalent)

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML

– Deep NNs operate as black-boxes
– Often important to provide small/intuitive explanations for

predictions made

• ...

150 / 177

What next?

• Oracle-based computing

– Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting

• Arms race for proof systems stronger than resolution/clause
learning

– Cutting Planes (CP)
– Extended Resolution (and equivalent)

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML

– Deep NNs operate as black-boxes
– Often important to provide small/intuitive explanations for

predictions made

• ...

150 / 177

What next?

• Oracle-based computing

– Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting

• Arms race for proof systems stronger than resolution/clause
learning

– Cutting Planes (CP)
– Extended Resolution (and equivalent)

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML

– Deep NNs operate as black-boxes
– Often important to provide small/intuitive explanations for

predictions made

• ...

150 / 177

Some final notes

• SAT is a low-level, but very powerful problem solving paradigm

– PySAT suggests a way to tackle this drawback, but there are others

• There is an ongoing revolution on problem solving with SAT oracles

• The use of SAT oracles is impacting problem solving for many
different complexity classes

– With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !
– Connections with ML seem unavoidable

151 / 177

Some final notes

• SAT is a low-level, but very powerful problem solving paradigm

– PySAT suggests a way to tackle this drawback, but there are others

• There is an ongoing revolution on problem solving with SAT oracles

• The use of SAT oracles is impacting problem solving for many
different complexity classes

– With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !
– Connections with ML seem unavoidable

151 / 177

Sample of tools

• PySAT

• SAT solvers:
– MiniSat
– Glucose

• MaxSAT solvers:
– RC2
– MSCG
– OpenWBO
– MaxHS

• MUS extractors:
– MUSer

• MCS extractors:
– mcsXL
– LBX
– MCSls

• Many other tools available from the ReasonLab server

152 / 177

https://pysathq.github.io/
https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
https://reason.di.fc.ul.pt/wiki/doku.php?id=rc2
https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
https://reason.di.fc.ul.pt/wiki/doku.php?id=muser
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsxl
https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls
https://reason.di.fc.ul.pt/wiki/doku.php?id=soft

Questions?

153 / 177

References I

[ABGL12] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy.
Improving SAT-based weighted MaxSAT solvers.
In CP, pages 86–101, 2012.

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
Solving (weighted) partial MaxSAT through satisfiability testing.
In SAT, pages 427–440, 2009.

[ABL10a] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
A new algorithm for weighted partial MaxSAT.
In AAAI, 2010.

[ABL+10b] Josep Argelich, Daniel Le Berre, Inês Lynce, Joao Marques-Silva, and
Pascal Rapicault.
Solving linux upgradeability problems using boolean optimization.
In LoCoCo, volume 29 of EPTCS, pages 11–22, 2010.

[ABL13] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
SAT-based MaxSAT algorithms.
Artif. Intell., 196:77–105, 2013.

154 / 177

References II

[AL08] Josep Argelich and Inês Lynce.
CNF instances from the software package installation problem.
In RCRA, volume 451 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[ALS09] Josep Argelich, Inês Lynce, and João P. Marques Silva.
On solving boolean multilevel optimization problems.
In IJCAI, pages 393–398, 2009.

[AMM15] M. Fareed Arif, Carlos Menćıa, and Joao Marques-Silva.
Efficient MUS enumeration of horn formulae with applications to axiom
pinpointing.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages
324–342. Springer, 2015.

[ANO+12] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, Enric
Rodŕıguez-Carbonell, and Valentin Mayer-Eichberger.
A new look at BDDs for pseudo-boolean constraints.
J. Artif. Intell. Res., 45:443–480, 2012.

155 / 177

References III

[ANOR09] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell.
Cardinality networks and their applications.
In SAT, pages 167–180, 2009.

[ANOR11] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell.
Cardinality networks: a theoretical and empirical study.
Constraints, 16(2):195–221, 2011.

[AS09] Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399–404, 2009.

[Bat68] Kenneth E. Batcher.
Sorting networks and their applications.
In AFIPS Spring Joint Computing Conference, volume 32 of AFIPS
Conference Proceedings, pages 307–314. Thomson Book Company,
Washington D.C., 1968.

156 / 177

References IV

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel.
New encodings of pseudo-boolean constraints into CNF.
In SAT, pages 181–194, 2009.

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum.
Diagnosing and solving over-determined constraint satisfaction problems.

In IJCAI, pages 276–281, 1993.

[BF15] Armin Biere and Andreas Fröhlich.
Evaluating CDCL restart schemes.
In Sixth Pragmatics of SAT workshop, 2015.

[Bie08] Armin Biere.
PicoSAT essentials.
JSAT, 4(2-4):75–97, 2008.

157 / 177

References V

[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal
unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages
70–86. Springer, 2015.

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal.
Towards understanding and harnessing the potential of clause learning.
J. Artif. Intell. Res., 22:319–351, 2004.

[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97–116, 2012.

[BMS00] Lúıs Baptista and Joao Marques-Silva.
Using randomization and learning to solve hard real-world instances of
satisfiability.
In CP, volume 1894 of Lecture Notes in Computer Science, pages
489–494. Springer, 2000.

158 / 177

References VI

[BP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
JSAT, 7(2-3):59–6, 2010.

[BS05] James Bailey and Peter J. Stuckey.
Discovery of minimal unsatisfiable subsets of constraints using hitting
set dualization.
In PADL, pages 174–186, 2005.

[CD91] John W. Chinneck and Erik W. Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
INFORMS Journal on Computing, 3(2):157–168, 1991.

[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[CT95] Zhi-Zhong Chen and Seinosuke Toda.
The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231–239, 1995.

159 / 177

References VII

[CZ10] Michael Codish and Moshe Zazon-Ivry.
Pairwise cardinality networks.
In LPAR (Dakar), volume 6355 of Lecture Notes in Computer Science,
pages 154–172. Springer, 2010.

[DB11] Jessica Davies and Fahiem Bacchus.
Solving MAXSAT by solving a sequence of simpler SAT instances.
In CP, pages 225–239, 2011.

[DB13a] Jessica Davies and Fahiem Bacchus.
Exploiting the power of MIP solvers in MAXSAT.
In SAT, pages 166–181, 2013.

[DB13b] Jessica Davies and Fahiem Bacchus.
Postponing optimization to speed up MAXSAT solving.
In CP, pages 247–262, 2013.

[dK89] Johan de Kleer.
A comparison of ATMS and CSP techniques.
In IJCAI, pages 290–296. Morgan Kaufmann, 1989.

160 / 177

References VIII

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland.
A machine program for theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget.
Explanation-based generalisation of failures.
In ECAI, pages 339–344, 1988.

[ES03] Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In SAT, pages 502–518, 2003.

[ES06] Niklas Eén and Niklas Sörensson.
Translating pseudo-boolean constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

161 / 177

References IX

[FM06] Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In SAT, volume 4121 of Lecture Notes in Computer Science, pages
252–265. Springer, 2006.

[FP01] Alan M. Frisch and Timothy J. Peugniez.
Solving non-boolean satisfiability problems with stochastic local search.
In IJCAI, pages 282–290. Morgan Kaufmann, 2001.

[FS02] Torsten Fahle and Meinolf Sellmann.
Cost based filtering for the constrained knapsack problem.
Annals OR, 115(1-4):73–93, 2002.

[Gav07] Marco Gavanelli.
The log-support encoding of CSP into SAT.
In CP, volume 4741 of Lecture Notes in Computer Science, pages
815–822. Springer, 2007.

162 / 177

References X

[Gel09] Allen Van Gelder.
Improved conflict-clause minimization leads to improved propositional
proof traces.
In SAT, pages 141–146, 2009.

[Gen02] Ian P. Gent.
Arc consistency in SAT.
In ECAI, pages 121–125. IOS Press, 2002.

[GF93] Georg Gottlob and Christian G. Fermüller.
Removing redundancy from a clause.
Artif. Intell., 61(2):263–289, 1993.

[GJ96] Richard Génisson and Philippe Jégou.
Davis and putnam were already checking forward.
In ECAI, pages 180–184, 1996.

[GN02] Evguenii I. Goldberg and Yakov Novikov.
BerkMin: A fast and robust SAT-solver.
In DATE, pages 142–149. IEEE Computer Society, 2002.

163 / 177

References XI

[GSC97] Carla P. Gomes, Bart Selman, and Nuno Crato.
Heavy-tailed distributions in combinatorial search.
In CP, volume 1330 of Lecture Notes in Computer Science, pages
121–135. Springer, 1997.

[HJL+15] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin
Biere.
Clause elimination for SAT and QSAT.
J. Artif. Intell. Res., 53:127–168, 2015.

[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric
Boussemart.
Extracting MUCs from constraint networks.
In ECAI, pages 113–117, 2006.

[HMM11] Federico Heras, António Morgado, and Joao Marques-Silva.
Core-guided binary search algorithms for maximum satisfiability.
In AAAI. AAAI Press, 2011.

164 / 177

References XII

[Hua07] Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In IJCAI, pages 2318–2323, 2007.

[IMM17] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
Cardinality encodings for graph optimization problems.
In IJCAI, pages 652–658, 2017.

[IMM18] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
PySAT: A python toolkit for prototyping with SAT oracles.
In SAT, volume 10929 of Lecture Notes in Computer Science, pages
428–437. Springer, 2018.

[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, 2019.

[IPM15] Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva.
SAT-based formula simplification.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages
287–298. Springer, 2015.

165 / 177

References XIII

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João
Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages
627–645. Springer, 2018.

[JHB12] Matti Järvisalo, Marijn Heule, and Armin Biere.
Inprocessing rules.
In IJCAR, volume 7364 of Lecture Notes in Computer Science, pages
355–370. Springer, 2012.

[Jun04] Ulrich Junker.
QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems.
In AAAI, pages 167–172, 2004.

[Kas90] Simon Kasif.
On the parallel complexity of discrete relaxation in constraint
satisfaction networks.
Artif. Intell., 45(3):275–286, 1990.

166 / 177

References XIV

[LGPC16a] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Exponential recency weighted average branching heuristic for SAT
solvers.
In AAAI, pages 3434–3440, 2016.

[LGPC16b] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Learning rate based branching heuristic for SAT solvers.
In SAT, pages 123–140, 2016.

[LLX+17] Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü.
An effective learnt clause minimization approach for CDCL SAT solvers.
In IJCAI, pages 703–711, 2017.

[LOM+18] Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li,
and Vijay Ganesh.
Machine learning-based restart policy for CDCL SAT solvers.
In SAT, pages 94–110, 2018.

167 / 177

References XV

[MBC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon,
Berke Durak, Xavier Leroy, and Ralf Treinen.
Managing the complexity of large free and open source package-based
software distributions.
In ASE, pages 199–208, 2006.

[MHM12] António Morgado, Federico Heras, and João Marques-Silva.
Improvements to core-guided binary search for MaxSAT.
In SAT, volume 7317 of Lecture Notes in Computer Science, pages
284–297. Springer, 2012.

[MJB13] Joao Marques-Silva, Mikolás Janota, and Anton Belov.
Minimal sets over monotone predicates in boolean formulae.
In CAV, volume 8044 of Lecture Notes in Computer Science, pages
592–607. Springer, 2013.

[MJIM15] Joao Marques-Silva, Mikolás Janota, Alexey Ignatiev, and António
Morgado.
Efficient model based diagnosis with maximum satisfiability.
In IJCAI, pages 1966–1972. AAAI Press, 2015.

168 / 177

References XVI

[MMSP09] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes.
Algorithms for weighted boolean optimization.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages
495–508. Springer, 2009.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In DAC, pages 530–535. ACM, 2001.

[MP08] Joao Marques-Silva and Jordi Planes.
Algorithms for maximum satisfiability using unsatisfiable cores.
In DATE, pages 408–413. ACM, 2008.

[MS95] J. Marques-Silva.
Search Algorithms for Satisfiability Problems in Combinational Switching
Circuits.
PhD thesis, University of Michigan, May 1995.

169 / 177

References XVII

[MSL11] Joao Marques-Silva and Inês Lynce.
On improving MUS extraction algorithms.
In SAT, volume 6695 of Lecture Notes in Computer Science, pages
159–173. Springer, 2011.

[MSS93] Joao Marques-Silva and Karem A. Sakallah.
Space pruning heuristics for path sensitization in test pattern generation.

Technical Report CSE-TR-178-93, University of Michigan, 1993.

[MSS94] Joao Marques-Silva and Karem A. Sakallah.
Dynamic search-space pruning techniques in path sensitization.
In DAC, pages 705–711. ACM Press, 1994.

[MSS96a] Joao Marques-Silva and Karem A. Sakallah.
Conflict analysis in search algorithms for propositional satisfiability.
Technical Report RT-04-96, INESC, May 1996.

170 / 177

References XVIII

[MSS96b] Joao Marques-Silva and Karem A. Sakallah.
GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

[MSS99] Joao Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Trans. Computers, 48(5):506–521, 1999.

[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao
Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362–1368, 2018.

[PD07] Knot Pipatsrisawat and Adnan Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In SAT, volume 4501 of Lecture Notes in Computer Science, pages
294–299. Springer, 2007.

171 / 177

References XIX

[PD09] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning SAT solvers with restarts.
In CP, volume 5732 of Lecture Notes in Computer Science, pages
654–668. Springer, 2009.

[PD11] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning SAT solvers as resolution engines.
Artif. Intell., 175(2):512–525, 2011.

[PG86] David A. Plaisted and Steven Greenbaum.
A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293–304, 1986.

[Pre07] Steven David Prestwich.
Variable dependency in local search: Prevention is better than cure.
In SAT, pages 107–120, 2007.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

172 / 177

References XX

[Rob65] John Alan Robinson.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, 1965.

[SB09] Niklas Sörensson and Armin Biere.
Minimizing learned clauses.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages
237–243. Springer, 2009.

[Sel03] Meinolf Sellmann.
Approximated consistency for knapsack constraints.
In CP, pages 679–693, 2003.

[Sin05] Carsten Sinz.
Towards an optimal CNF encoding of boolean cardinality constraints.
In CP, pages 827–831, 2005.

173 / 177

References XXI

[SMV+07] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H.
Liffiton, and Karem A. Sakallah.
Improved design debugging using maximum satisfiability.
In FMCAD, pages 13–19. IEEE Computer Society, 2007.

[SP04] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan.
NiVER: Non increasing variable elimination resolution for preprocessing
SAT instances.
In SAT, 2004.

[SSS12] Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
Learning back-clauses in SAT.
In SAT, pages 498–499, 2012.

[Stu13] Peter J. Stuckey.
There are no CNF problems.
In SAT, pages 19–21, 2013.

174 / 177

References XXII

[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.

In CAV, pages 68–94, 2017.

[Tri03] Michael A. Trick.
A dynamic programming approach for consistency and propagation for
knapsack constraints.
Annals OR, 118(1-4):73–84, 2003.

[Tse68] G.S. Tseitin.
On the complexity of derivations in the propositional calculus.
In H.A.O. Slesenko, editor, Structures in Constructives Mathematics and
Mathematical Logic, Part II, pages 115–125, 1968.

[TSJL07] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner.
OPIUM: optimal package install/uninstall manager.
In ICSE, pages 178–188, 2007.

175 / 177

References XXIII

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori
Banbara.
Compiling finite linear CSP into SAT.
Constraints, 14(2):254–272, 2009.

[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291–304, 2008.

[Wal00] Toby Walsh.
SAT v CSP.
In CP, volume 1894 of Lecture Notes in Computer Science, pages
441–456. Springer, 2000.

[War98] Joost P. Warners.
A linear-time transformation of linear inequalities into conjunctive
normal form.
Inf. Process. Lett., 68(2):63–69, 1998.

176 / 177

References XXIV

[ZM03] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications.
In DATE, pages 10880–10885. IEEE Computer Society, 2003.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik.
Efficient conflict driven learning in boolean satisfiability solver.
In ICCAD, pages 279–285. IEEE Computer Society, 2001.

[ZS00] Hantao Zhang and Mark E. Stickel.
Implementing the Davis-Putnam method.
J. Autom. Reasoning, 24(1/2):277–296, 2000.

177 / 177

	Basic Definitions
	CDCL SAT Solving
	Clause Learning, UIPs & Minimization
	Search Restarts
	Lazy Data Structures
	Why CDCL Works?
	Incremental SAT
	Introducing PySAT

	Problem Modeling for SAT
	Recap Clausification of Boolean Formulas
	Hard and Soft Constraints
	Linear Constraints
	Encoding CSPs
	Modeling Examples

	Problem Solving with SAT Oracles
	Minimal Unsatisfiability
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Examples in PySAT

	Sample of Applications
	Solving MaxClique with SAT

	A Glimpse of the Future

