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What is SAT?

• SAT is the decision problem for propositional logic

– Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (, )

– Often restricted to Conjunctive Normal Form (CNF)

– Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]
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The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

– Conflict-Driven Clause Learning (CDCL)
– (CDCL) SAT has impacted many different fields
– Hundreds (thousands?) of practical applications
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CDCL SAT solver improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���������������������������������������������������������

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

4 / 177



How good are SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995∼2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s

4. Glucose: modern state of the art CDCL SAT solver

5. ...

• Example 1: model checking example (from IBM)

• Example 2: cooperative path finding (CPF)
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How good are SAT solvers?

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080

(or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

– # of assignments to 15775 variables: > 104748 !
– Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

– # of assignments to > 2.8× 106 variables: � 10840000 !!
– Obs: SAT solvers at present (but formula dependent)
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SAT can make the difference – axiom pinpointing
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• EL+ medical ontologies [AMM15]

– Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes)
& Enumeration

7 / 177



SAT can make the difference – model based diagnosis
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• Model-based diagnosis problem instances [MJIM15]

– Maximum satisfiability (MaxSAT)
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CDCL SAT is ubiquitous in problem solving

Problem Solving
with SAT
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This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177



This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177



This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177



This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177



This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177



This tutorial

• Part #0: Basic definitions & notation

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT
– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles
– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS); Enumeration problems
– Quantification problems; Counting problems; Etc.

• Part #4: Sample of applications

• Part #5: A glimpse of the future

10 / 177



Part 0

Basic Definitions
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Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}
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Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [SP04, SB09]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)
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Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...
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(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅
w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels
I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 177



Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]
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Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict
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Proof trace ⊥: (ā ∨ c) (a ∨ b) (c̄) (b̄)

16 / 177



Unsatisfiable cores & proof traces

• CNF formula:
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Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)
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(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)
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The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule
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x̄

17 / 177



The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)
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Part 1

CDCL SAT Solving
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What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

– Clause learning & non-chronological backtracking [MS95, MSS96b, MSS99]

I Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

I Minimize learned clauses [SB09, Gel09, LLX+17]

I Opportunistically delete clauses [MSS96b, MSS99, GN02, AS09]

– Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

– Lazy data structures

I Watched literals [MMZ+01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZ+01]

I Phase saving [PD07]

– ...
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Outline

Clause Learning, UIPs & Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT
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Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

– Reasons: x and z

I Decision variable & literals assigned at decision levels less than
current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations
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Clause learning – after backtracking

Level Dec. Unit Prop.

0

1
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3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [MMZ+01]
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Quiz – conflict analysis
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7 [] – – {h̄, b̄, ā} –
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Unique implication points (UIPs)
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Multiple UIPs

Level Dec. Unit Prop.
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b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

– First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]
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Quiz – conflict analysis with UIP(s)
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Quiz (Cont.) – non-chronological backtracking

Without UIP:

Level Dec. Unit Prop.
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With UIP:
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Clause minimization I

Level Dec. Unit Prop.
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(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)
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• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x̄ ∨ ȳ ∨ z̄)
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Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

•
• Cannot apply self-subsuming

resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time
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• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

29 / 177



Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)
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Quiz – conflict clause minimization

Level Dec. Unit Prop.

0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a, d , r , c} ∅ [s] –

g s {a, d , r , c} ∅ [d ] –

g d {a, d , r , c} ∅ [] d marked, skip

g – {a, d , r , c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r , c} ∅ [r ] –

d r {a, r , c} ∅ [] r marked, skip

d – {a, r , c} ∅ [] no unmarked vars; ∴ drop d
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Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.

0
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r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)

Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a, b] –

r a {a, c} ∅ [b] a marked

r b {a, c} {b} [] b decision & unmarked

r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both
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Branch randomization

• Heavy-tail behavior: [GSC97]

– 10000 runs, branching randomization on satisfiable industrial instance

∴ use rapid randomized restarts (search restarts)
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Search restarts

• Restart search after a number of conflicts

– Increase cutoff after each restart

I Guarantees completeness
I Different policies exist

– Effective for SAT & UNSAT formulas. Why?

I Proof complexity arguments

– Clause learning (very) effective in between restarts

cutoff

cutoff

✓
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Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l

– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others [ZS00]
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Watched literals

@2 @0 @2 @1
A B C D E F G H

Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H

After backtracking to DLevel 1
Watched literals untouched
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Watched literals – different implementations exist!

@2 @0 @2 @1
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Additional key techniques

• Conflict-driven branching [MMZ+01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [MSS96b, MSS99]

– Delete less used clauses [GN02, ES03]

– Delete based on LBD metric [AS09]

• Other effective techniques:

– Phase saving [PD07]

– Novel restart strategies [Hua07, BF15, LOM+18]

– Preprocessing/inprocessing [JHB12, HJL+15]

– Clause minimization: LBD-based and UP-based [AS09, LLX+17]
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Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners

– UIPs mimic unique sensitization points (USPs), from testing
– Analysis of conflicts organized by decision levels

I In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,
etc.

I Need to find ways to exploit the circuit’s internal structure
I Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
– Clauses are learned locally to each decision level
– UIPs further localize the learned clauses
– GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
– Most practical problem instances exhibit the structure GRASP-like

clause learning is most effective on

I Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]
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Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learning
clauses (that still apply)

• Most often used solution: [ES03]

– Use activation/selector/indicator variables

Given clause Added to SAT solver
ci ci ∨ si

– To activate clause: add assumption si = 1
– To deactivate clause: add assumption si = 0 (optional)
– To remove clause: add unit (si )
– Any learned clause contains explanation given working assumptions

(more next)
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An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables

• Soft clauses S: add indicator variables {s1, s2, s3, s4}

• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver
handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable
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Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S, given B
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Overview of PySAT

[IMM18]

PySAT modules

solvers

module
cardenc

module
formula

module

PySAT API

• Open source, available on github

• Comprehensive list of SAT solvers

• Comprehensive list of cardinality encodings

• Fairly comprehensive documentation

• Several use cases
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Available solvers

Solver Version

Glucose 3.0

Glucose 4.1

Lingeling bbc-9230380-160707

Minicard 1.2

Minisat 2.2 release

Minisat GitHub version

• Solvers can either be used incrementally or non-incrementally

• Tools can use multiple solvers, e.g. for hitting set dualization or
CEGAR-based QBF solving

• URL:
https://pysathq.github.io/docs/html/api/solvers.html
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Formula manipulation

Features

CNF & Weighted CNF (WCNF)

Read formulas from file/string

Write formulas to file

Append clauses to formula

Negate CNF formulas

Translate between CNF and WCNF

ID manager

• URL:
https://pysathq.github.io/docs/html/api/formula.html
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Available cardinality encodings

Name Type

pairwise AtMost1

bitwise AtMost1

ladder AtMost1

sequential counter AtMostk

sorting network AtMostk

cardinality network AtMostk

totalizer AtMostk

mtotalizer AtMostk

kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL:
https://pysathq.github.io/docs/html/api/card.html

49 / 177

https://pysathq.github.io/docs/html/api/card.html


Available cardinality encodings – more later

Name Type

pairwise AtMost1

bitwise AtMost1

ladder AtMost1
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Installation & info

• Installation:
$ [sudo] pip2|pip3 install python-sat

• Website: https://pysathq.github.io/
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Basic interface – Python3

>>> from pysat.card import *

>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)

>>> print(am1.clauses)

[[-1, 2], [-1, -3], [2, -3]]

>>>

>>> from pysat.solvers import Solver

>>> with Solver(name=’m22’, bootstrap_with=am1.clauses) as s:

... if s.solve(assumptions=[1, 2, 3]) == False:

... print(s.get_core())

[3, 1]
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Part 2

Problem Modeling for SAT
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Quiz – solving Sudoku (first attempt)
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Quiz – solving Sudoku (first attempt)

• How to solve Sudoku with constraints / SAT?
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A solution in Prolog CLPFD

:− use modu le ( l i b r a r y ( c l p f d ) ) .

sudoku ( Rows ) :−
l ength ( Rows , 9 ) ,
m a p l i s t ( s a m e l e n g t h ( Rows ) , Rows ) ,
append ( Rows , Vs ) ,
Vs i n s 1 . . 9 ,
m a p l i s t ( a l l d i s t i n c t , Rows ) ,
t r a n s p o s e ( Rows , Columns ) ,
m a p l i s t ( a l l d i s t i n c t , Columns ) ,
Rows = [ As , Bs , Cs , Ds , Es , Fs , Gs , Hs , I s ] ,
b l o c k s ( As , Bs , Cs ) ,
b l o c k s ( Ds , Es , Fs ) ,
b l o c k s ( Gs , Hs , I s ) .

b l o c k s ( [ ] , [ ] , [ ] ) .
b l o c k s ( [ N1 , N2 , N3 | Ns1 ] , [ N4 , N5 , N6 | Ns2 ] , [ N7 , N8 , N9 | Ns3 ] ) :−

a l l d i s t i n c t ( [ N1 , N2 , N3 , N4 , N5 , N6 , N7 , N8 , N9 ] ) ,
b l o c k s ( Ns1 , Ns2 , Ns3 ) .
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A solution with Minizinc

i n t : S ;
i n t : N = S ∗ S ;
a r r a y [ 1 . . N , 1 . . N] o f v a r 1 . . N: p u z z l e ;
i n c l u d e ” a l l d i f f e r e n t . mzn” ;

% A l l c e l l s i n a row , i n a column , and i n a s u b s q u a r e a r e
d i f f e r e n t .

c o n s t r a i n t
f o r a l l ( i i n 1 . . N) ( a l l d i f f e r e n t ( j i n 1 . . N) ( p u z z l e [ i , j ] ) ) /\
f o r a l l ( j i n 1 . . N) ( a l l d i f f e r e n t ( i i n 1 . . N) ( p u z z l e [ i , j ] ) ) /\
f o r a l l ( i , j i n 1 . . S )

( a l l d i f f e r e n t ( p , q i n 1 . . S ) ( p u z z l e [ S∗( i −1)+p ,
S∗( j −1)+q ] ) ) ;

s o l v e s a t i s f y ;

output [ ” sudoku :\ n” ] ++
[ show ( p u z z l e [ i , j ] ) ++

i f j = N then
i f i mod S = 0 /\ i < N then ”\n\n” e l s e ”\n” e n d i f

e l s e
i f j mod S = 0 then ” ” e l s e ” ” e n d i f

e n d i f
| i , j i n 1 . . N ] ;
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Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:

– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)
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Solving Sudoku – propositional logic – variables

• Modeling with propositional variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j,k ∈ {0, 1}, i , j , k ∈ {1, . . . , 9}
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Solving Sudoku – propositional logic – constraints

• Value in each cell is valid:

– For i , j ∈ {1, . . . , 9}: ∑9
k=1 vi,j,k = 1

• Each value used exactly once in each row:

– For i ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
j=1 vi,j,k = 1

• Each value used exactly once in each column:

– For j ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
i=1 vi,j,k = 1

• Each value used exactly once in each 3× 3 sub-grid:

– For i , j ∈ {0, 1, 2}, k ∈ {1, . . . , 9}:∑3
r=1

∑3
s=1 v3i+r ,3j+s,k = 1

• Q: how to (propositionally) encode Equals1 constraints?
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Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .
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Sudoku with PySAT

Demo

61 / 177



Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

62 / 177



How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution

– Operator elimination; De Morgan’s laws, remove double negations
& apply distributivity

– Worst-case exponential
– Set of variables constant

• Tseitin’s translation & variants (next)

– New variables added
– Satisfiability is preserved
– Linear size transformation
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Representing Boolean formulas / circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas

– Can use any logic connective: ∧,∨,¬,→,↔, . . .
• Can represent circuits/formulas as CNF formulas [Tse68, PG86]

– For each (simple) gate, CNF formula encodes the consistent
assignments to the gate’s inputs and output

I Given z = OP(x , y), represent in CNF z ↔ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

Ft = (r̄ ∨ t) ∧ (s̄ ∨ t) ∧ (r ∨ s ∨ t̄)

NAND

OR

a
b

c

r
s t
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Representing Boolean formulas / circuits II

NAND
a
b

c

ab
c 00 01 11 10

0

1

1

1 1 1

0 0 0

0

a b c Fc(a,b,c)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)
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Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.
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(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
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Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi , if xi = 0, then z = 0

, i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND,
NAND, OR, NOR, etc.
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Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj
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Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)
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Equals1, AtLeast1 & AtMost1 constraints

• ∑n
j=1 xj = 1: encode with (

∑n
j=1 xj ≤ 1) ∧ (

∑n
j=1 xj ≥ 1)

• ∑n
j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

• ∑n
j=1 xj ≤ 1 encode with:

– Pairwise encoding

I Clauses: O(n2) ; No auxiliary variables

– Sequential counter [Sin05]

I Clauses: O(n) ; Auxiliary variables: O(n)

– Bitwise encoding [FP01, Pre07]

I Clauses: O(n log n) ; Auxiliary variables: O(log n)

– ...
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Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables
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– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

73 / 177



Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

a→ b̄ ∧ c̄ ∧ d̄ =⇒ (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄)
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• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables
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Sequential counter encoding

• Encode
∑n

j=1 xj ≤ 1 with sequential counter:

(x̄1 ∨ s1) ∧ (x̄n ∨ s̄n−1)∧∧
1<i<n ((x̄i ∨ si ) ∧ (s̄i−1 ∨ si ) ∧ (x̄i ∨ s̄i−1))

– If some xj = 1, then all si variables must be assigned

I si = 1 for i ≥ j , and so xi = 0 for i > j
I si = 0 for i < j , and so xi = 0 for i < j
I Thus, all other xi variables must take value 0

– If all xj = 0, can find consistent assignment to si variables

– O(n) clauses ; O(n) auxiliary variables
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Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi )) = (x̄j ∨ li ), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

75 / 177



Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi )) = (x̄j ∨ li ), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0
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x3 2 10
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General cardinality constraints

• General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)

– Operational encoding [War98]

I Clauses/Variables: O(n)
I Does not ensure arc-consistency

– Generalized pairwise

I Clauses: O(2n) ; no auxiliary variables

– Sequential counters [Sin05]

I Clauses/Variables: O(n k)

– BDDs [ES06]

I Clauses/Variables: O(n k)

– Sorting networks [Bat68, ES06]

I Clauses/Variables: O(n log2 n)

– Cardinality Networks: [ANOR09, ANOR11]

I Clauses/Variables: O(n log2 k)

– Pairwise Cardinality Networks: [CZ10]

– ...
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Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2
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a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
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Another example

• Example: a + b + c + d + e ≤ 2

• Encoding will contain C 5
3 = 10 clauses:

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b → ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c → ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d → ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c → ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d → ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d → ē =⇒ (c̄ ∨ d̄ ∨ ē)
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Sequential counter – revisited I

• Encode
∑n

j=1 xj ≤ k with sequential counter:

x1 x2 xn

v1 v2 vn

s1,1

s1,2

s1,k s2,k

s2,2

s2,1

sn�1,k

sn�1,2

sn�1,1

• Equations for each block 1 < i < n , 1 < j < k :

si =
∑i

j=1 xj

si represented in unary

si ,1 = si−1,1 ∨ xi
si ,j = si−1,j ∨ si−1,j−1 ∧ xi
vi = (si−1,k ∧ xi ) = 0
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Sequential counter – revisited II

• CNF formula for
∑n

j=1 xj ≤ k :

– Assume: k > 0 ∧ n > 1

– Indeces: 1 < i < n , 1 < j ≤ k

(¬x1 ∨ x1,1)
(¬s1,j)
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)
(¬xi ∨ ¬si−1,k)
(¬xn ∨ ¬sn−1,k)

• O(n k) clauses & variables

80 / 177



Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [War98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANO+12]

I Clauses & aux variables: O(n3 log(amax))

– ...
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Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3
• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0
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x1
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1 0
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ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

ITE
1 0

s

ba

z

ITE
0 1

s

ba

z

ITE
0 1
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0 1
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x1
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Encoding PB constraints with BDDs II

• Encode 3x1 + 3x2 + x3 ≤ 3

• Extract ITE-based circuit from BDD

• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3
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More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a knapsack constraint
I Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both
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Recap Clausification of Boolean Formulas
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CSP constraints

• Many possible encodings:

– Direct encoding [dK89, GJ96, Wal00]

– Log encoding [Wal00]

– Support encoding [Kas90, Gen02]

– Log-Support encoding [Gav07]

– Order encoding for finite linear CSPs [TTKB09]
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Direct encoding for CSP w/ binary constraints

• Variable xi with domain Di , with mi = |Di |
• Constraints are relations over domains of variables

– For a constraint over x1, . . . , xk , define relation R ⊆ D1 × · · · × Dk

– Need to encode elements not in the relation
– For a binary relation, use set of binary clauses, one for each element

not in R

• Represent values of xi with Boolean variables xi ,1, . . . , xi ,mi

• Require
∑mi

k=1 xi ,k = 1

– Suffices to require
∑mi

k=1 xi,k ≥ 1 [Wal00]

• If the pair of assignments xi = vi ∧ xj = vj is not allowed, add
binary clause (x̄i ,vi ∨ x̄j ,vj )
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Additional topics

• Encoding problems to SAT is ubiquitous:

– Many more encodings of finite domain CSP into SAT

– Encodings of Answer Set Programming (ASP) into SAT

– Eager SMT solving

– Theorem provers iteratively encode problems into SAT

– Model finders interatively encode problems into SAT

– ...
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Minimum vertex cover

• The problem:

– Graph G = (V ,E )
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}
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Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}
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Graph coloring

• Given undirected graph G = (V ,E ) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)
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The N-Queens problem I

• The N-Queens Problem:
Place N queens on a N ×N board, such that no two queens attack
each other

• Example for a 5× 5 board:

Q

Q

Q

Q

Q
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The N-Queens problem II

• xij : 1 if queen placed in position (i , j); 0 otherwise

• Each row must have exactly one queen:

1 ≤ i ≤ N,
N∑
j=1

xij = 1

• Each column must have exactly one queen:

1 ≤ j ≤ N,
N∑
i=1

xij = 1

• Also, need to define constraints on diagonals...
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The N-Queens problem III

• Each diagonal can have at most one queen:

↘ ↙ ↙ ↙
↘ ↖
↘ ↖
↘ ↖
↗ ↗ ↗ ↗

i = 1, 2 ≤ j < N,

j−1∑
k=0

xi+k j−k ≤ 1

i = N, 1 ≤ j < N,

N−j∑
k=0

xi−k j+k ≤ 1

j = 1, 1 ≤ i < N,
N−i∑
k=0

xi+k j+k ≤ 1

j = N, 2 ≤ i < N,
i−1∑
k=0

xi−k j−k ≤ 1
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Design debugging

[SMV+07]

Correct circuit

AND

AND

r
s

y

z

Input stimuli: 〈r , s〉 = 〈0, 1〉
Valid output: 〈y , z〉 = 〈0, 0〉

Faulty circuit

AND
r
s

y

zOR

Input stimuli: 〈r , s〉 = 〈0, 1〉
Invalid output: 〈y , z〉 = 〈0, 0〉

• The model:
– Hard clauses: Input and output values
– Soft clauses: CNF representation of circuit

• The problem:
– Maximize number of satisfied clauses (i.e. circuit gates)
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Software package upgrades

[MBC+06, TSJL07, AL08, ALS09, ABL+10b]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci )

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi )

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)
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Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

ϕH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

ϕS = {(x1), (x2), (x3), (x4)}
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The knapsack problem

• Given list of pairs (vi ,wi ), i = 1, . . . , n

– Each pair (vi ,wi ), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W
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Part 3

Problem Solving with SAT Oracles
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Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi ). Call NP oracle. If answer is yes, then add (xi ) to
F . If answer is no, then add (¬xi ) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call
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Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

# solutions Counting Problems
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... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...
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Oracle-based problem solving – ideal scenario

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Oracle-based problem solving – in some settings

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems
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Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...
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Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...
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Selection of topics

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction
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Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

107 / 177



Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
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Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa
[Rei87, BS05]

• How to compute MUSes & MCSes efficiently with SAT oracles?
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Why it matters?

• Analysis of over-constrained systems

– Model-based diagnosis [Rei87]

I Software fault localization
I Spreadsheet debugging
I Debugging relational specifications (e.g. Alloy)
I Type error debugging
I Axiom pinpointing in description logics
I ...

– Model checking of software & hardware systems
– Inconsistency measurement
– Minimal models; MinCost SAT; ...
– ...

• Find minimal relaxations to recover consistency

– But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency

– But also minimum explanations of inconsistency, eg. Smallest MUS
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Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c 6∈ MUS

return M // Final M is MUS

end

• Number of oracles calls: O(m) [CD91, BDTW93]
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Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}
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Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference

Insertion-based O(k m) [dSNP88, vMW08]

MCS MUS O(k m) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k + k log(m
k )) [Jun04]

Progression O(k log(1 + m
k )) [MJB13]

• Note: Lower bound in FPNP
|| and upper bound in FPNP

[CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation
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Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT
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Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17] .
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

116 / 177



MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

116 / 177



MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques
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Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative
MHS approaches are the most effective [MaxSAT14]
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Core-guided solver performance – partial
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Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300  350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]
120 / 177



Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk , k=2, constraint

AtMostk/PB

constraints used
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become hard
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MSU3 core-guided algorithm
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AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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MaxSAT solution is |ϕ| − I = 12− 2 = 10
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become hard

Some clauses

not relaxed
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MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}
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MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10a, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution
– ...
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Example: naive (deletion) MUS extraction

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c 6∈ MUS

return M // Final M is MUS

end

• Number of predicate tests: O(m) [CD91, BDTW93]
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Naive MUS extraction I

def main ( ) :
c n f = CNF( f r o m f i l e=a r g v [ 1 ] ) # c r e a t e a CNF o b j e c t from f i l e
( rnv , assumps ) = add assumps ( c n f )

o r a c l e = S o l v e r ( name= ’ g3 ’ , b o o t s t r a p w i t h=c n f . c l a u s e s )

mus = f i n d m u s ( assumps , o r a c l e )
mus = [ r e f − r n v f o r r e f i n mus ]
p r i n t ( ”MUS: ” , mus )

i f n a m e == ” m a i n ” :
main ( )

130 / 177



Naive MUS extraction II

def add assumps ( c n f ) :
r n v = topv = c n f . nv
assumps = [ ] # l i s t o f a s s u m p t i o n s to use
f o r i i n range ( l e n ( c n f . c l a u s e s ) ) :

topv += 1
assumps . append ( topv ) # r e g i s t e r l i t e r a l
c n f . c l a u s e s [ i ] . append(− topv ) # e x t e n d c l a u s e w i t h l i t e r a l

c n f . nv = c n f . nv + l e n ( assumps ) # update # o f v a r s
r e t u r n rnv , assumps

def main ( ) :
c n f = CNF( f r o m f i l e=a r g v [ 1 ] ) # c r e a t e a CNF o b j e c t from f i l e
( rnv , assumps ) = add assumps ( c n f )

o r a c l e = S o l v e r ( name= ’ g3 ’ , b o o t s t r a p w i t h=c n f . c l a u s e s )

mus = f i n d m u s ( assumps , o r a c l e )
mus = [ r e f − r n v f o r r e f i n mus ]
p r i n t ( ”MUS: ” , mus )

i f n a m e == ” m a i n ” :
main ( )
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Naive MUS extraction III

from s y s import a r g v

from p y s a t . f o r m u l a import CNF
from p y s a t . s o l v e r s import S o l v e r

def f i n d m u s ( assmp , o r a c l e ) :
i = 0
w h i l e i < l e n ( assmp ) :

t s = assmp [ : i ] + assmp [ ( i + 1 ) : ]
i f not o r a c l e . s o l v e ( a s s u m p t i o n s=t s ) :

assmp = t s
e l s e :

i += 1
r e t u r n assmp
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A less naive MUS extractor

def c l s e t r e f i n e ( assmp , o r a c l e ) :
assmp = s o r t e d ( assmp )
w h i l e True :

o r a c l e . s o l v e ( a s s u m p t i o n s=assmp )
t s = s o r t e d ( o r a c l e . g e t c o r e ( ) )
i f t s == assmp :

break
assmp = t s

r e t u r n assmp
# . . .

def main ( ) :
c n f = CNF( f r o m f i l e=a r g v [ 1 ] ) # c r e a t e a CNF o b j e c t from f i l e
( rnv , assumps ) = add assumps ( c n f )

o r a c l e = S o l v e r ( name= ’ g3 ’ , b o o t s t r a p w i t h=c n f . c l a u s e s )

assumps = c l s e t r e f i n e ( assumps , o r a c l e )
mus = f i n d m u s ( assumps , o r a c l e )
mus = [ r e f − r n v f o r r e f i n mus ]
p r i n t ( ”MUS: ” , mus )

i f n a m e == ” m a i n ” :
main ( )
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Encoding sudoku

c l a s s SudokuEncoding (CNF, o b j e c t ) :
def i n i t ( s e l f ) :

# i n i t i a l i z i n g CNF ’ s i n t e r n a l p a r a m e t e r s
super ( SudokuEncoding , s e l f ) . i n i t ( )
s e l f . v p o o l = IDPool ( )

# a t l e a s t one v a l u e i n each c e l l
f o r i , j i n i t e r t o o l s . p r o d u c t ( range ( 9 ) , range ( 9 ) ) :

s e l f . append ( [ s e l f . v a r ( i , j , v a l ) f o r v a l i n range ( 9 ) ] )
# a t most one v a l u e i n each row
f o r i i n range ( 9 ) :

f o r v a l i n range ( 9 ) :
f o r j1 , j 2 i n i t e r t o o l s . c o m b i n a t i o n s ( range ( 9 ) , 2 ) :

s e l f . append ([− s e l f . v a r ( i , j1 , v a l ) , −s e l f . v a r ( i , j2 , v a l ) ] )
# a t most one v a l u e i n each column
f o r j i n range ( 9 ) :

f o r v a l i n range ( 9 ) :
f o r i 1 , i 2 i n i t e r t o o l s . c o m b i n a t i o n s ( range ( 9 ) , 2 ) :

s e l f . append ([− s e l f . v a r ( i1 , j , v a l ) , −s e l f . v a r ( i2 , j , v a l ) ] )
# a t most one v a l u e i n each s q u a r e
f o r v a l i n range ( 9 ) :

f o r i i n range ( 3 ) :
f o r j i n range ( 3 ) :

s u b g r i d = i t e r t o o l s . p r o d u c t ( range (3∗ i , 3∗ i +3) , range (3∗ j , 3∗ j +3))
f o r c i n i t e r t o o l s . c o m b i n a t i o n s ( s u b g r i d , 2 ) :

s e l f . append ([− s e l f . v a r ( c [ 0 ] [ 0 ] , c [ 0 ] [ 1 ] , v a l ) ,
−s e l f . v a r ( c [ 1 ] [ 0 ] , c [ 1 ] [ 1 ] , v a l ) ] )

def v a r ( s e l f , i , j , v ) :
r e t u r n s e l f . v p o o l . i d ( t u p l e ( [ i + 1 , j + 1 , v + 1 ] ) )

def c e l l ( s e l f , v a r ) :
r e t u r n s e l f . v p o o l . o b j ( v a r )
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A prototype sudoku game
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A prototype sudoku game

Demo
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Part 4

Sample of Applications
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Flagship applications

• Bounded (& unbounded) model checking

• Automated planning

• Software model checking

• Package management

• Design debugging

• Haplotyping
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CDCL SAT is the engines’ engine

Engines using
SAT engines

Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...
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CDCL SAT is ubiquitous in problem solving

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC
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Recent applications

• Two-level logic minimization with SAT [IPM15]

– Reimplementation of Quine-McCluskey with SAT oracles

• Maximum cliques with SAT [IMM17]

• Explainable decision sets [IPNM18]

– Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

– Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

– On-demand extraction of explanations for any ML model
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Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G
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Abduction-based explanations

[INMS19]

• Positive:

– General approach, applicable to any ML model
represented as a set of constraints

– Ability to explain predictions of NNs

• Negative:

– NN sizes are fairly small, i.e. tens of neurons
– Best results with ILP-based approach

I SMT/SAT models currently ineffective
I But, algorithms inspired SAT-based solutions
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Outline

Solving MaxClique with SAT
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Modeling MaxClique with SAT

• Given (undirected) graph, find largest complete subgraph

• Main constraint:

Given u, v ∈ V :
If (u, v) 6∈ E , then one must not have both u and v in
the maximum-size clique

• Associate Boolean xu with u ∈ V

• Main goal:

Assign 1 to largest set of variables that are consistent
with constraint

– E.g. use MaxSAT
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An example

Construct F = 〈H,S〉s.t.

{
H , {(¬xu ∨ ¬xv ) | (u, v) ∈ EC}
S , {(xu) | v ∈ V }

u1

u2

u3

u4 u5

u6

u7

H=


(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)


S =


(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)


solve F with MaxSAT !
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But the size of EC can be problematic...

Instance |V| |E| |E|C
comm-n10000 10000 10000 49995000

ca-AstroPh 18772 396160 175807218

ca-citeseer 227322 814136 25836945367

ca-coauthors-dblp 540488 15245731 146048663585

ca-CondMat 23133 186936 267392475

ca-dblp-2010 226415 716462 25631272858

ca-dblp-2012 317082 1049868 50269606035

ca-HepPh 12008 237010 71865026

ca-HepTh 9877 51971 48730532

ca-MathSciNet 332689 820644 55340331061

ia-email-EU 32430 54397 525814268

ia-reality-call 6809 9484 23175161

ia-retweet-pol 18470 61157 170518528

ia-wiki-Talk 92117 360767 4242456136

rt-pol 18470 61157 170518528

rt barackobama 9631 9826 46373070

soc-epinions 63947 606512 2044034866

soc-gplus 23628 39242 279113764

tech-as-caida2007 26477 53383 350475620

tech-internet-as 40164 85123 806508407

tech-pgp 10680 24340 57012200

tech-WHOIS 7476 56943 27892083

web-arabic-2005 163598 1747269 13380487332

web-baidu-baike-related 415641 3284387 86375643874

web-it-2004 509338 7178413 129705675378

web-NotreDame 325729 1497134 53048356451

web-sk-2005 121422 334419 7371377334
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Unrealistic to
model with SAT
on sparse graphs
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How to reduce the encoding size?

• Main hurdle:

SAT-based approaches based on GC = (V ,EC )
will not scale...
And G = (V ,E ) is much smaller than GC = (V ,EC )

• Can we model MaxClique using solely G?
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Another take at solving MaxClique with SAT

• Revisit the original decision problem:

Given G = (V ,E ), is there a clique of size K?

• First, one must pick exactly K vertices:∑
u∈V

xu = K

• And second, if a vertex u ∈ V is picked (i.e. xu = 1), then
K − 1 of its neighbours must also be picked!

xu →

 ∑
v∈Adj(u)

xv = K − 1


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Part 5

A Glimpse of the Future
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What next?

• Oracle-based computing

– Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting

• Arms race for proof systems stronger than resolution/clause
learning

– Cutting Planes (CP)
– Extended Resolution (and equivalent)

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML

– Deep NNs operate as black-boxes
– Often important to provide small/intuitive explanations for

predictions made

• ...
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Some final notes

• SAT is a low-level, but very powerful problem solving paradigm

– PySAT suggests a way to tackle this drawback, but there are others

• There is an ongoing revolution on problem solving with SAT oracles

• The use of SAT oracles is impacting problem solving for many
different complexity classes

– With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !
– Connections with ML seem unavoidable
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Sample of tools

• PySAT

• SAT solvers:
– MiniSat
– Glucose

• MaxSAT solvers:
– RC2
– MSCG
– OpenWBO
– MaxHS

• MUS extractors:
– MUSer

• MCS extractors:
– mcsXL
– LBX
– MCSls

• Many other tools available from the ReasonLab server

152 / 177

https://pysathq.github.io/
https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
https://reason.di.fc.ul.pt/wiki/doku.php?id=rc2
https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
https://reason.di.fc.ul.pt/wiki/doku.php?id=muser
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsxl
https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls
https://reason.di.fc.ul.pt/wiki/doku.php?id=soft


Questions?
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Rodŕıguez-Carbonell.
Cardinality networks and their applications.
In SAT, pages 167–180, 2009.
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Evaluating CDCL restart schemes.
In Sixth Pragmatics of SAT workshop, 2015.

[Bie08] Armin Biere.
PicoSAT essentials.
JSAT, 4(2-4):75–97, 2008.

157 / 177



References V

[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal
unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages
70–86. Springer, 2015.

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal.
Towards understanding and harnessing the potential of clause learning.
J. Artif. Intell. Res., 22:319–351, 2004.

[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97–116, 2012.
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[SB09] Niklas Sörensson and Armin Biere.
Minimizing learned clauses.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages
237–243. Springer, 2009.

[Sel03] Meinolf Sellmann.
Approximated consistency for knapsack constraints.
In CP, pages 679–693, 2003.

[Sin05] Carsten Sinz.
Towards an optimal CNF encoding of boolean cardinality constraints.
In CP, pages 827–831, 2005.

173 / 177



References XXI

[SMV+07] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H.
Liffiton, and Karem A. Sakallah.
Improved design debugging using maximum satisfiability.
In FMCAD, pages 13–19. IEEE Computer Society, 2007.

[SP04] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan.
NiVER: Non increasing variable elimination resolution for preprocessing
SAT instances.
In SAT, 2004.

[SSS12] Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
Learning back-clauses in SAT.
In SAT, pages 498–499, 2012.

[Stu13] Peter J. Stuckey.
There are no CNF problems.
In SAT, pages 19–21, 2013.

174 / 177



References XXII

[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.

In CAV, pages 68–94, 2017.

[Tri03] Michael A. Trick.
A dynamic programming approach for consistency and propagation for
knapsack constraints.
Annals OR, 118(1-4):73–84, 2003.

[Tse68] G.S. Tseitin.
On the complexity of derivations in the propositional calculus.
In H.A.O. Slesenko, editor, Structures in Constructives Mathematics and
Mathematical Logic, Part II, pages 115–125, 1968.

[TSJL07] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner.
OPIUM: optimal package install/uninstall manager.
In ICSE, pages 178–188, 2007.

175 / 177



References XXIII

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori
Banbara.
Compiling finite linear CSP into SAT.
Constraints, 14(2):254–272, 2009.

[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291–304, 2008.

[Wal00] Toby Walsh.
SAT v CSP.
In CP, volume 1894 of Lecture Notes in Computer Science, pages
441–456. Springer, 2000.

[War98] Joost P. Warners.
A linear-time transformation of linear inequalities into conjunctive
normal form.
Inf. Process. Lett., 68(2):63–69, 1998.

176 / 177



References XXIV

[ZM03] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications.
In DATE, pages 10880–10885. IEEE Computer Society, 2003.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik.
Efficient conflict driven learning in boolean satisfiability solver.
In ICCAD, pages 279–285. IEEE Computer Society, 2001.

[ZS00] Hantao Zhang and Mark E. Stickel.
Implementing the Davis-Putnam method.
J. Autom. Reasoning, 24(1/2):277–296, 2000.

177 / 177


	Basic Definitions
	CDCL SAT Solving
	Clause Learning, UIPs & Minimization
	Search Restarts
	Lazy Data Structures
	Why CDCL Works?
	Incremental SAT
	Introducing PySAT

	Problem Modeling for SAT
	Recap Clausification of Boolean Formulas
	Hard and Soft Constraints
	Linear Constraints
	Encoding CSPs
	Modeling Examples

	Problem Solving with SAT Oracles
	Minimal Unsatisfiability
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Examples in PySAT

	Sample of Applications
	Solving MaxClique with SAT

	A Glimpse of the Future

