Computing with SAT Oracles

Joao Marques-Silva

University of Lisbon, Portugal

VMCAI 2019 Winter School
IST, Lisbon, Portugal
January 09-12 2019

What is SAT?

- SAT is the decision problem for propositional logic
- Well-formed propositional formulas, with variables, logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)

What is SAT?

- SAT is the decision problem for propositional logic
- Well-formed propositional formulas, with variables, logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal:

Decide whether formula has a satisfying assignment

What is SAT?

- SAT is the decision problem for propositional logic
- Well-formed propositional formulas, with variables, logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal:

Decide whether formula has a satisfying assignment

- SAT is NP-complete

The CDCL SAT disruption

- CDCL SAT solving is a success story of Computer Science

The CDCL SAT disruption

- CDCL SAT solving is a success story of Computer Science
- Conflict-Driven Clause Learning (CDCL)
- (CDCL) SAT has impacted many different fields
- Hundreds (thousands?) of practical applications

Model:-Based Diagnosis
 binate Cuvering Noise Analysiss Technology MappingGames Network Security Management Fault Localization Pedigree Consistency, Function Decomposition Maximum SatisfiabilityConfiguration Termination Analysis Software Testing ${ }_{\text {Fiter resigig }}$ Switching Network Verification

Satisfiahility Modulo Theoriesp Equivelence checesing Resource Constrained Scheduling Quantified Boolean Formulas Package Management Symbolici Trajectory Evaluation Software Model Checking Constraint Programming

O

Planning Logic Synthesis
Power Estimation Circuit Delay Computation
Test Suite Minimization
Lazy Clause Generation Pseudo-Boolean Formulas

CDCL SAT solver improvement

[Source: Simon 2015]

How good are SAT solvers?

Demos

How good are SAT solvers?

Demos

- Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995~2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

How good are SAT solvers?

Demos

- Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995~2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

- Example 1: model checking example (from IBM)
- Example 2: cooperative path finding (CPF)

How good are SAT solvers?

- Number of seconds since the Big Bang: $\approx 10^{17}$

How good are SAT solvers?

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)

How good are SAT solvers?

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):

How good are SAT solvers?

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):
- \# of assignments to 15775 variables: > 10^{4748} !
- Obs: SAT solvers in the late 90s (but formula dependent)

How good are SAT solvers?

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):
- \# of assignments to 15775 variables: > 10^{4748} !
- Obs: SAT solvers in the late 90s (but formula dependent)
- Search space with 2832875 propositional variables (worst case):

How good are SAT solvers?

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):
- \# of assignments to 15775 variables: > 10^{4748} !
- Obs: SAT solvers in the late 90s (but formula dependent)
- Search space with 2832875 propositional variables (worst case):
- \# of assignments to $>2.8 \times 10^{6}$ variables: $\gg 10^{840000}$!!
- Obs: SAT solvers at present (but formula dependent)

SAT can make the difference - axiom pinpointing

- $\mathcal{E} \mathcal{L}^{+}$medical ontologies
- Minimal unsatisfiability (MUSes) \& maximal satisfiability (MCSes) \& Enumeration

SAT can make the difference - model based diagnosis

- Model-based diagnosis problem instances
- Maximum satisfiability (MaxSAT)

CDCL SAT is ubiquitous in problem solving

This tutorial

- Part \#0: Basic definitions \& notation

This tutorial

- Part \#0: Basic definitions \& notation
- Part \#1: Modern SAT solvers
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Goal: Overview for non-experts

This tutorial

- Part \#0: Basic definitions \& notation
- Part \#1: Modern SAT solvers
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Goal: Overview for non-experts
- Part \#2: Modeling problems for SAT
- Propositional encodings
- Modeling examples

This tutorial

- Part \#0: Basic definitions \& notation
- Part \#1: Modern SAT solvers
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Goal: Overview for non-experts
- Part \#2: Modeling problems for SAT
- Propositional encodings
- Modeling examples
- Part \#3: Problem solving with SAT oracles
- Minimal unsatisfiability (MUS)
- Maximum satisfiability (MaxSAT)
- Maximal satisfiability (MSS/MCS); Enumeration problems
- Quantification problems; Counting problems; Etc.

This tutorial

- Part \#0: Basic definitions \& notation
- Part \#1: Modern SAT solvers
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Goal: Overview for non-experts
- Part \#2: Modeling problems for SAT
- Propositional encodings
- Modeling examples
- Part \#3: Problem solving with SAT oracles
- Minimal unsatisfiability (MUS)
- Maximum satisfiability (MaxSAT)
- Maximal satisfiability (MSS/MCS); Enumeration problems
- Quantification problems; Counting problems; Etc.
- Part \#4: Sample of applications

This tutorial

- Part \#0: Basic definitions \& notation
- Part \#1: Modern SAT solvers
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Goal: Overview for non-experts
- Part \#2: Modeling problems for SAT
- Propositional encodings
- Modeling examples
- Part \#3: Problem solving with SAT oracles
- Minimal unsatisfiability (MUS)
- Maximum satisfiability (MaxSAT)
- Maximal satisfiability (MSS/MCS); Enumeration problems
- Quantification problems; Counting problems; Etc.
- Part \#4: Sample of applications
- Part \#5: A glimpse of the future

Part 0

Basic Definitions

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$
- $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers
- Self-subsuming resolution (with $\alpha^{\prime} \subseteq \alpha$):

$$
\frac{(\alpha \vee x) \quad\left(\alpha^{\prime} \vee \bar{x}\right)}{(\alpha)}
$$

- (α) subsumes $(\alpha \vee x)$

Unit propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

Unit propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

Unit propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:
$w=1, x=1, y=1, z=1$
- Unit clause rule: if clause is unit, its sole literal must be satisfied

Unit propagation

Level Dec. Unit Prop.

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

- Unit clause rule: if clause is unit, its sole literal must be satisfied

Unit propagation

> Level Dec. Unit Prop.

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings: $w=1, x=1, y=1, z=1$

- Unit clause rule: if clause is unit, its sole literal must be satisfied
- Additional definitions:
- Antecedent (or reason) of an implied assignment
- $(\bar{b} \vee \bar{c} \vee d)$ for d
- Associate assignment with decision levels
- $w=1$ @ $1, x=1 @ 2, y=1 @ 3, z=1 @ 4$
- $r=1 @ 0, d=1 @ 4, \ldots$

Resolution proofs

- Refutation of unsatisfiable formula by iterated resolution operations produces resolution proof
- An example:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

- Resolution proof:

- A modern SAT solver can generate resolution proofs using clauses learned by the solver

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Implication graph with conflict

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Proof trace $\perp:(\bar{a} \vee c)(a \vee b)(\bar{c})(\bar{b})$

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Resolution proof follows structure of conflicts

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Unsatisfiable subformula (core): $(\bar{c}),(\bar{b}),(\bar{a} \vee c),(a \vee b)$

The DPLL algorithm

- Optional: pure literal rule

The DPLL algorithm

[DP60, DLL62]

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

- Optional: pure literal rule

The DPLL algorithm

[DP60, DLL62]

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.
$\begin{array}{ll}0 & \emptyset \\ 1 & x \\ 2 & y\end{array}$

The DPLL algorithm

[DP60, DLL62]

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

The DPLL algorithm

[DP60, DLL62]

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

The DPLL algorithm

[DP60, DLL62]

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

The DPLL algorithm

[DP60, DLL62]

- Optional: pure literal rule

The DPLL algorithm

[DP60, DLL62]

- Optional: pure literal rule

Part 1

CDCL SAT Solving

What is a CDCL SAT solver?

- Extend DPLL SAT solver with:
- Clause learning \& non-chronological backtracking [M595, MS596b, M5S99]
- Search restarts
- Lazy data structures
- Conflict-guided branching
- ...

What is a CDCL SAT solver?

- Extend DPLL SAT solver with:
[DP60, DLL62]
- Clause learning \& non-chronological backtracking [M595, MS596b, MSS99]
- Exploit UIPs
[MS95, MSS99, ZMMM01, SSS12]
- Minimize learned clauses
- Opportunistically delete clauses
- Search restarts
[GSC97, BMS00, Hua07, Bie08, LOM^{+}18]
- Lazy data structures
- Watched literals
- Conflict-guided branching
- Lightweight branching heuristics
- Phase saving

Outline

Clause Learning, UIPs \& Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

Clause learning

Level Dec. Unit Prop.

Clause learning

Level Dec. Unit Prop.

- Analyze conflict

Clause learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current

Clause learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$

Clause learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause learning

Level Dec. Unit Prop.

- Analyze conflict

- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause learning

Level Dec. Unit Prop.

- Analyze conflict

[MS95, MSS96a, MSS96a, MSS96b, MSS99]
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution
- Learned clauses result from (selected) resolution operations

Clause learning - after backtracking

Level Dec. Unit Prop.

Clause learning - after backtracking

Level Dec. Unit Prop.

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause learning - after backtracking

Level	Dec.	Unit Prop.	Level	Dec.	Unit Prop.
0	\emptyset		0	\emptyset	
1	x		1	$x \longrightarrow \bar{z}$	
2	y				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause learning - after backtracking

Level	Dec.	Unit Prop.	Level	Dec.	Unit Prop.
0	\emptyset		0	\emptyset	
1	x		1	$x \longrightarrow$	
2	y				
3	z				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1
- Learned clauses are asserting (with exceptions)
- Backtracking differs from plain DPLL:
- Always bactrack after a conflict

Quiz - conflict analysis

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}\}$	$\{c, d\}$

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}\}$	$\{c, d\}$
4	$[c, d]$	c	\mathfrak{c}_{1}	$\{\bar{h}, \bar{b}\}$	$\{a\}$

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}\}$	$\{c, d\}$
4	$[c, d]$	c	\mathfrak{c}_{1}	$\{\bar{h}, \bar{b}\}$	$\{a\}$
5	$[d, a]$	d	\mathfrak{c}_{2}	$\{\bar{h}, \bar{b}\}$	\emptyset

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}\}$	$\{c, d\}$
4	$[c, d]$	c	\mathfrak{c}_{1}	$\{\bar{h}, \bar{b}\}$	$\{a\}$
5	$[d, a]$	d	\mathfrak{c}_{2}	$\{\bar{h}, \bar{b}\}$	\emptyset
6	$[a]$	a	dec var	$\{\bar{h}, \bar{b}, \bar{a}\}$	-

Quiz - conflict analysis

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}\}$	$\{c, d\}$
4	$[c, d]$	c	\mathfrak{c}_{1}	$\{\bar{h}, \bar{b}\}$	$\{a\}$
5	$[d, a]$	d	\mathfrak{c}_{2}	$\{\bar{h}, \overline{,}\}$	\emptyset
6	$[a]$	a	dec var	$\{\bar{h}, \bar{b}, \bar{a}\}$	-
7	[]	-	-	$\{\bar{h}, \bar{b}, \bar{a}\}$	-

Unique implication points (UIPs)

Level Dec. Unit Prop.

Unique implication points (UIPs)

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$

Unique implication points (UIPs)

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- But a is an UIP
- Dominator in DAG for decision level 4

Unique implication points (UIPs)

- Learn clause $(\bar{n} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- But a is an UIP
- Dominator in DAG for level 4
- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{a})$

Multiple UIPs

Level Dec. Unit Prop.

Multiple UIPs

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause ($\bar{x} \vee \bar{z} \vee a)$
- Clause is not asserting

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause ($\bar{x} \vee \bar{z} \vee a$)
- Clause is not asserting
- In practice smaller clauses more effective
- Compare with ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$
- Clause is not asserting
- In practice smaller clauses more effective
- Compare with $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- Multiple UIPs proposed in GRASP
- First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause ($\bar{x} \vee \bar{z} \vee a$)
- Clause is not asserting
- In practice smaller clauses more effective
- Compare with ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- Multiple UIPs proposed in GRASP
- First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on some instances

Quiz - conflict analysis with UIP(s)

Quiz - conflict analysis with UIP(s)

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$

Quiz - conflict analysis with UIP(s)

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$

Quiz - conflict analysis with UIP(s)

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset

Quiz - conflict analysis with UIP(s)

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}, \bar{e}\}$	\emptyset

Quiz - conflict analysis with UIP(s)

Step	Var Queue	Extract Var	Antecedent	Recorded Lits	Added to Queue
0	-	\perp	\mathfrak{c}_{6}	\emptyset	$\{f, g\}$
1	$[f, g]$	f	\mathfrak{c}_{4}	$\{\bar{h}\}$	$\{e\}$
2	$[g, e]$	g	\mathfrak{c}_{5}	$\{\bar{h}\}$	\emptyset
3	$[e]$	e	\mathfrak{c}_{3}	$\{\bar{h}, \bar{e}\}$	\emptyset
6	[]	-	-	$\{\bar{h}, \bar{e}\}$	-

Quiz (Cont.) - non-chronological backtracking

Without UIP:

Level | Dec. Unit Prop. | |
| :---: | :---: |
| 0 | 0 |
| 1 | |

With UIP:

Clause minimization I

Level Dec. Unit Prop.

Clause minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$

Clause minimization I

- Learn clause ($\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b}$)
- Apply self-subsuming resolution (i.e. local minimization)

Clause minimization I

- Learn clause ($\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)

Clause minimization I

- Learn clause ($\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)
- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z})$

Clause minimization II

Level Dec. Unit Prop.

Clause minimization II

Level Dec. Unit Prop.

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{c})$

Clause minimization II

Level Dec. Unit Prop.

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$

Clause minimization II

Level Dec. Unit Prop.

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization

Clause minimization II

- Learn clause ($\overline{\bar{W}} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Marked nodes: literals in learned clause

Clause minimization II

- Learn clause ($\overline{\bar{W}} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new decision nodes
- Drop literal c if only marked nodes visited

Clause minimization II

- Learn clause ($\overline{\bar{W}} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \vee \bar{x})$
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new decision nodes
- Drop literal c if only marked nodes visited

Clause minimization II

- Learn clause ($\overline{\bar{W}} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \vee \bar{x})$
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new decision nodes
- Drop literal c if only marked nodes visited
- Recursive minimization runs in (amortized) linear time

Quiz - conflict clause minimization

Quiz - conflict clause minimization

Learned clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$
Minimized clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$

Quiz - conflict clause minimization

Level
0 Dec. Unit Prop.

$$
\begin{array}{l|l|l|l|l|l}
\hline \text { Target } & \text { Curr Var } & \text { Marked } & \text { Unmarked } & \text { Vars to Trace } & \text { Action } \\
\hline
\end{array}
$$

Quiz - conflict clause minimization

Level
0 Dec. Unit Prop.

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-

Quiz - conflict clause minimization

Level Dec. Unit Prop.

Learned clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$
Minimized clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-
g	s	$\{a, d, r, c\}$	\emptyset	$[d]$	-

Quiz - conflict clause minimization

Level Dec. Unit Prop.

Learned clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$
Minimized clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-
g	s	$\{a, d, r, c\}$	\emptyset	$[d]$	-
g	d	$\{a, d, r, c\}$	\emptyset	[]	d marked, skip

Quiz - conflict clause minimization

Level
0
0

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-
g	s	$\{a, d, r, c\}$	\emptyset	$[d]$	-
g	d	$\{a, d, r, c\}$	\emptyset	[]	d marked, skip
g	-	$\{a, d, r, c\}$	\emptyset	[]	no unmarked vars; \therefore drop g

Quiz - conflict clause minimization

Level Dec. Unit Prop.

Learned clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \vee \bar{g})$
Minimized clause: $\quad(\bar{a} \vee \bar{r} \vee \bar{c} \vee \bar{d} \quad)$

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-
g	s	$\{a, d, r, c\}$	\emptyset	$[d]$	-
g	d	$\{a, d, r, c\}$	\emptyset	[]	d marked, skip
g	-	$\{a, d, r, c\}$	\emptyset	[]	no unmarked vars; \therefore drop g
d	d	$\{a, r, c\}$	\emptyset	$[r]$	-

Quiz - conflict clause minimization

Level
0 Dec. Unit Prop.

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-
g	s	$\{a, d, r, c\}$	\emptyset	$[d]$	-
g	d	$\{a, d, r, c\}$	\emptyset	[]	d marked, skip
g	-	$\{a, d, r, c\}$	\emptyset	[]	no unmarked vars; \therefore drop g
d	d	$\{a, r, c\}$	\emptyset	$[r]$	-
d	r	$\{a, r, c\}$	\emptyset	[]	r marked, skip

Quiz - conflict clause minimization

$\begin{array}{ccc}\text { Level } \\ 0 & \text { Dec. Unit Prop. } \\ 0\end{array}$

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
g	g	$\{a, d, r, c\}$	\emptyset	$[s]$	-
g	s	$\{a, d, r, c\}$	\emptyset	$[d]$	-
g	d	$\{a, d, r, c\}$	\emptyset	[]	d marked, skip
g	-	$\{a, d, r, c\}$	\emptyset	[]	no unmarked vars; \therefore drop g
d	d	$\{a, r, c\}$	\emptyset	$[r]$	-
d	r	$\{a, r, c\}$	\emptyset	[]	r marked, skip
d	-	$\{a, r, c\}$	\emptyset	[]	no unmarked vars; \therefore drop d

Quiz - conflict clause minimization (cont.)

Quiz - conflict clause minimization (cont.)

Level $\left.\begin{array}{l}\text { Dec. Unit Prop. } \\ 0\end{array}\right)$
1
Target \mid Curr Var \mid Marked \mid Unmarked \mid Vars to Trace \mid Action

Quiz - conflict clause minimization (cont.)

Level
0
0

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
r	r	$\{a, c\}$	\emptyset	$[a, b]$	-
r	a	$\{a, c\}$	\emptyset	$[b]$	a marked
r	b	$\{a, c\}$	$\{b\}$	[]	b decision \& unmarked
r	-	$\{a, c\}$	$\{b\}$	[]	unmarked vars; \therefore keep r

Quiz - conflict clause minimization (cont.)

Level
0 Dec . Unit Prop.

Target	Curr Var	Marked	Unmarked	Vars to Trace	Action
r	r	$\{a, c\}$	\emptyset	$[a, b]$	-
r	a	$\{a, c\}$	\emptyset	$[b]$	a marked
r	b	$\{a, c\}$	$\{b\}$	[]	b decision \& unmarked
r	-	$\{a, c\}$	$\{b\}$	[]	unmarked vars; \therefore keep r
a, c	-	-	\emptyset	[]	a, c decision variables; keep both

Outline

Clause Learning, UIPs \& Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

Branch randomization

- Heavy-tail behavior:

- 10000 runs, branching randomization on satisfiable industrial instance
\therefore use rapid randomized restarts (search restarts)

Search restarts

- Restart search after a number of conflicts

Search restarts

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist

Search restarts

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist
- Effective for SAT \& UNSAT formulas. Why?

Search restarts

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist
- Effective for SAT \& UNSAT formulas. Why?
- Proof complexity arguments

Search restarts

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist
- Effective for SAT \& UNSAT formulas. Why?
- Proof complexity arguments
- Clause learning (very) effective in between restarts

Outline

Clause Learning, UIPs \& Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why?

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why? Unit propagation

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{I}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{I}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation:

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{l}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals

Data structures basics

- Recap states of a clause: unresolved, unit, falsified, satisfied
- Each literal / should access clauses containing / and \bar{I}
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals
- Watched literals are one example of lazy data structures
- But there are others

Watched literals

Watched literals

Watch 2 unassigned literals in each clause

Watched literals

Watch 2 unassigned literals in each clause At DLevel 2: clause is unresolved

Watched literals

Watch 2 unassigned literals in each clause At DLevel 2: clause is unresolved

At DLevel 3: watch updated

Watched literals

Watch 2 unassigned literals in each clause At DLevel 2: clause is unresolved

At DLevel 3: watch updated

At DLevel 4: watch updated

Watched literals

Watch 2 unassigned literals in each clause At DLevel 2: clause is unresolved

At DLevel 3: watch updated

At DLevel 4: watch updated

At DLevel 5: clause is unit
Literal D assigned value 1; clause becomes satisfied

Watched literals

Watch 2 unassigned literals in each clause At DLevel 2: clause is unresolved

At DLevel 3: watch updated

At DLevel 4: watch updated

At DLevel 5: clause is unit
Literal D assigned value 1 ; clause becomes satisfied

After backtracking to DLevel 1 Watched literals untouched

Watched literals - different implementations exist!

Watch 2 unassigned literals in each clause At DLevel 2: clause is unresolved

At DLevel 3: watch updated

At DLevel 4: watch updated

At DLevel 5: clause is unit
Literal D assigned value 1 ; clause becomes satisfied

After backtracking to DLevel 1 Watched literals untouched

Additional key techniques

- Conflict-driven branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Recent promising ML-based branching
[LGPC16a, LGPC16b]

Additional key techniques

- Conflict-driven branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Recent promising ML-based branching
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete larger clauses
- Delete less used clauses
- Delete based on LBD metric

Additional key techniques

- Conflict-driven branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Recent promising ML-based branching
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete larger clauses
[MSS96b, MSS99]
- Delete less used clauses
- Delete based on LBD metric
- Other effective techniques:
- Phase saving
- Novel restart strategies
[Hua07, BF15, LOM $^{+}$18]
- Preprocessing/inprocessing
[JHB12, HJL^{+}15]
- Clause minimization: LBD-based and UP-based

Outline

Clause Learning, UIPs \& Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

Why CDCL works - a practitioner's view

- GRASP-like clause learning extensively inspired in circuit reasoners
- UIPs mimic unique sensitization points (USPs), from testing
- Analysis of conflicts organized by decision levels
- In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
- Need to find ways to exploit the circuit's internal structure
- Several ideas originated in earlier work

Why CDCL works - a practitioner's view

- GRASP-like clause learning extensively inspired in circuit reasoners
- UIPs mimic unique sensitization points (USPs), from testing
- Analysis of conflicts organized by decision levels
- In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
- Need to find ways to exploit the circuit's internal structure
- Several ideas originated in earlier work
[MSS93, MSS94]
- Understanding problem structure is essential
- Clauses are learned locally to each decision level
- UIPs further localize the learned clauses
- GRASP-like clause learning aims at learning small clauses, related with the sources of conflicts
- Most practical problem instances exhibit the structure GRASP-like clause learning is most effective on
- Most problems are not natively represented in clausal form

Why CDCL works - a practitioner's view

- GRASP-like clause learning extensively inspired in circuit reasoners
- UIPs mimic unique sensitization points (USPs), from testing
- Analysis of conflicts organized by decision levels
- In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
- Need to find ways to exploit the circuit's internal structure
- Several ideas originated in earlier work
[MSS93, MSS94]
- Understanding problem structure is essential
- Clauses are learned locally to each decision level
- UIPs further localize the learned clauses
- GRASP-like clause learning aims at learning small clauses, related with the sources of conflicts
- Most practical problem instances exhibit the structure GRASP-like clause learning is most effective on
- Most problems are not natively represented in clausal form
- There are also proof complexity arguments

Outline

Clause Learning, UIPs \& Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)
- Most often used solution:

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)
- Most often used solution:
[ESO3]
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)
- Most often used solution:
[ES03]
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

- To activate clause: add assumption $s_{i}=1$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)
- Most often used solution:
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

- To activate clause: add assumption $s_{i}=1$
- To deactivate clause: add assumption $s_{i}=0$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)
- Most often used solution:
[ES03]
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

- To activate clause: add assumption $s_{i}=1$
- To deactivate clause: add assumption $s_{i}=0$
- To remove clause: add unit $\left(\bar{s}_{i}\right)$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learning clauses (that still apply)
- Most often used solution:
[ES03]
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \overline{s_{i}}$

- To activate clause: add assumption $s_{i}=1$
- To deactivate clause: add assumption $s_{i}=0$
- To remove clause: add unit $\left(\bar{s}_{i}\right)$
- Any learned clause contains explanation given working assumptions (more next)

An example

$$
\begin{aligned}
\mathcal{B} & =\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
\mathcal{S} & =\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Background knowledge \mathcal{B} : final clauses, i.e. no indicator variables
- Soft clauses \mathcal{S} : add indicator variables $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$

An example

$$
\begin{aligned}
\mathcal{B} & =\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
\mathcal{S} & =\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Background knowledge \mathcal{B} : final clauses, i.e. no indicator variables
- Soft clauses \mathcal{S} : add indicator variables $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$
- E.g. given assumptions $\left\{s_{1}=1, s_{2}=0, s_{3}=0, s_{4}=1\right\}$, SAT solver handles formula:

$$
\mathcal{F}=\{(\bar{a} \vee b),(\bar{a} \vee c),(a),(a \vee \bar{b})\}
$$

which is satisfiable

Quiz - what happens in this case?

$$
\begin{aligned}
\mathcal{B} & =\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
\mathcal{S} & =\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Given assumptions $\left\{s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=1\right\}$?

Quiz - what happens in this case?

$$
\begin{aligned}
\mathcal{B} & =\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
\mathcal{S} & =\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Given assumptions $\left\{s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=1\right\}$?

Quiz - what happens in this case?

$$
\begin{aligned}
\mathcal{B} & =\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
\mathcal{S} & =\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Given assumptions $\left\{s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=1\right\}$?

- Unsatisfiable core: $1^{\text {st }}$ and $2^{\text {nd }}$ clauses of \mathcal{S}, given \mathcal{B}

Outline

Clause Learning, UIPs \& Minimization

Search Restarts

Lazy Data Structures

Why CDCL Works?

Incremental SAT

Introducing PySAT

Overview of PySAT

[IMM18]

Overview of PySAT

[IMM18]

- Open source, available on github

Overview of PySAT

- Open source, available on github
- Comprehensive list of SAT solvers
- Comprehensive list of cardinality encodings
- Fairly comprehensive documentation
- Several use cases

Available solvers

Solver	Version
Glucose	3.0
Glucose	4.1
Lingeling	bbc- $9230380-160707$
Minicard	1.2
Minisat	2.2 release
Minisat	GitHub version

- Solvers can either be used incrementally or non-incrementally
- Tools can use multiple solvers, e.g. for hitting set dualization or CEGAR-based QBF solving
- URL:
https://pysathq.github.io/docs/html/api/solvers.html

Formula manipulation

Features
CNF \& Weighted CNF (WCNF)
Read formulas from file/string
Write formulas to file
Append clauses to formula
Negate CNF formulas
Translate between CNF and WCNF
ID manager

- URL:
https://pysathq.github.io/docs/html/api/formula.html

Available cardinality encodings

Name	Type
pairwise	AtMost1
bitwise	AtMost1
ladder	AtMost1
sequential counter	AtMost k
sorting network	AtMost k
cardinality network	AtMost k
totalizer	AtMost k
mtotalizer	AtMost k
kmtotalizer	AtMost k

- Also AtLeastK and Equals K constraints
- URL:
https://pysathq.github.io/docs/html/api/card.html

Available cardinality encodings - more later

Name	Type
pairwise	AtMost1
bitwise	AtMost1
ladder	AtMost1
sequential counter	AtMost k
sorting network	AtMost k
cardinality network	AtMost k
totalizer	AtMost k
mtotalizer	AtMost k
kmtotalizer	AtMost k

- Also AtLeastK and Equals K constraints
- URL:
https://pysathq.github.io/docs/html/api/card.html

Installation \& info

- Installation:
\$ [sudo] pip2|pip3 install python-sat
- Website: https://pysathq.github.io/

Basic interface - Python3

```
>>> from pysat.card import *
>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)
>>> print(am1.clauses)
\([[-1,2],[-1,-3],[2,-3]]\)
>>>
>>> from pysat.solvers import Solver
>>> with Solver(name='m22', bootstrap_with=am1.clauses) as s:
    if s.solve(assumptions=[1, 2, 3]) == False:
        print(s.get_core())
\([3,1]\)
```


Part 2

Problem Modeling for SAT

Quiz - solving Sudoku (first attempt)

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Quiz - solving Sudoku (first attempt)

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Quiz - solving Sudoku (first attempt)

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

- How to solve Sudoku with constraints / SAT?

A solution in Prolog CLPFD

```
:- use_module(library(clpfd)).
sudoku(Rows) :-
    length(Rows, 9),
    maplist(same_length(Rows), Rows),
    append(Rows, Vs),
    Vs ins 1..9,
    maplist(all_distinct, Rows),
    transpose(Rows, Columns),
    maplist(all_distinct, Columns),
    Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],
    blocks(As, Bs, Cs),
    blocks(Ds, Es, Fs),
    blocks(Gs, Hs, Is ).
```

blocks([], [], []).
blocks ([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :-
all_distinct ([N1,N2,N3,N4, N5, N6, N7, N8, N9]) ,
blocks(Ns1, Ns2, Ns3).

A solution with Minizinc

```
int: S;
int: N = S * S;
array[1..N,1..N] of var 1..N: puzzle;
include "alldifferent.mzn";
% All cells in a row, in a column, and in a subsquare are
    different.
constraint
    forall(i in 1..N)( alldifferent(j in 1..N)( puzzle[i,j] )) /\
    forall(j in 1..N)( alldifferent(i in 1..N)( puzzle[i,j] )) /\
    forall(i,j in 1..S)
            ( alldifferent(p,q in 1..S)( puzzle[S*(i-1)+p,
            S*(j - 1)+q] ));
    solve satisfy;
    output [ "sudoku:\n" ] ++
    [ show(puzzle[i,j]) ++
        if j = N then
            if i mod S = 0 \ i < N then "\n\n" else "\n" endif
        else
            if j mod S = 0 then " " else " " endif
            endif
            | i,j in 1..N ];
```


Solving Sudoku - with constraints

- Modeling the problem with integer variables:
- Rows: $i=1, \ldots, 9$
- Columns: $j=1, \ldots, 9$
- Variables: $v_{i, j} \in\{1,2, \ldots, 9\}, i, j \in\{1, \ldots, 9\}$
- Constraints:

Solving Sudoku - with constraints

- Modeling the problem with integer variables:
- Rows: $i=1, \ldots, 9$
- Columns: $j=1, \ldots, 9$
- Variables: $v_{i, j} \in\{1,2, \ldots, 9\}, i, j \in\{1, \ldots, 9\}$
- Constraints:
- Each value used exactly once in each row:
- For $i \in\{1, \ldots, 9\}$: alldifferent $\left(v_{i, 1}, \ldots, v_{i, 9}\right)$

Solving Sudoku - with constraints

- Modeling the problem with integer variables:
- Rows: $i=1, \ldots, 9$
- Columns: $j=1, \ldots, 9$
- Variables: $v_{i, j} \in\{1,2, \ldots, 9\}, i, j \in\{1, \ldots, 9\}$
- Constraints:
- Each value used exactly once in each row:
- For $i \in\{1, \ldots, 9\}$: alldifferent $\left(v_{i, 1}, \ldots, v_{i, 9}\right)$
- Each value used exactly once in each column:
- For $j \in\{1, \ldots, 9\}$: alldifferent $\left(v_{1, j}, \ldots, v_{9, j}\right)$

Solving Sudoku - with constraints

- Modeling the problem with integer variables:
- Rows: $i=1, \ldots, 9$
- Columns: $j=1, \ldots, 9$
- Variables: $v_{i, j} \in\{1,2, \ldots, 9\}, i, j \in\{1, \ldots, 9\}$
- Constraints:
- Each value used exactly once in each row:
- For $i \in\{1, \ldots, 9\}$: alldifferent $\left(v_{i, 1}, \ldots, v_{i, 9}\right)$
- Each value used exactly once in each column:
- For $j \in\{1, \ldots, 9\}$: alldifferent $\left(v_{1, j}, \ldots, v_{9, j}\right)$
- Each value used exactly once in each 3×3 sub-grid:
- For $i, j \in\{0,1,2\}$:
alldifferent $\left(v_{3 i+1,3 j+1}, v_{3 i+1,3 j+2}, v_{3 i+1,3 j+3}, v_{3 i+2,3 j+1}, \ldots, v_{3 i+3,3 j+1}, \ldots\right)$

Solving Sudoku - propositional logic - variables

- Modeling with propositional variables:
- Rows: $i=1, \ldots, 9$
- Columns: $j=1, \ldots, 9$
- Variables: $v_{i, j, k} \in\{0,1\}, i, j, k \in\{1, \ldots, 9\}$

Solving Sudoku - propositional logic - constraints

- Value in each cell is valid:
- For $i, j \in\{1, \ldots, 9\}$:

$$
\sum_{k=1}^{9} v_{i, j, k}=1
$$

- Each value used exactly once in each row:
- For $i \in\{1, \ldots, 9\}, k \in\{1, \ldots, 9\}$:

$$
\sum_{j=1}^{9} v_{i, j, k}=1
$$

- Each value used exactly once in each column:
- For $j \in\{1, \ldots, 9\}, k \in\{1, \ldots, 9\}$:

$$
\sum_{i=1}^{9} v_{i, j, k}=1
$$

- Each value used exactly once in each 3×3 sub-grid:
- For $i, j \in\{0,1,2\}, k \in\{1, \ldots, 9\}$:

$$
\sum_{r=1}^{3} \sum_{s=1}^{3} V_{3 i+r, 3 j+s, k}=1
$$

Solving Sudoku - propositional logic - constraints

- Value in each cell is valid:
- For $i, j \in\{1, \ldots, 9\}$:

$$
\sum_{k=1}^{9} v_{i, j, k}=1
$$

- Each value used exactly once in each row:
- For $i \in\{1, \ldots, 9\}, k \in\{1, \ldots, 9\}$:

$$
\sum_{j=1}^{9} v_{i, j, k}=1
$$

- Each value used exactly once in each column:
- For $j \in\{1, \ldots, 9\}, k \in\{1, \ldots, 9\}$:

$$
\sum_{i=1}^{9} v_{i, j, k}=1
$$

- Each value used exactly once in each 3×3 sub-grid:
- For $i, j \in\{0,1,2\}, k \in\{1, \ldots, 9\}$:

$$
\sum_{r=1}^{3} \sum_{s=1}^{3} v_{3 i+r, 3 j+s, k}=1
$$

- Q: how to (propositionally) encode Equals1 constraints?

Constraints for fixed cells

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Constraints for fixed cells

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- Integer variables:

$$
\begin{aligned}
& v_{1,1}=5, v_{1,2}=3, v_{1,5}=7, v_{2,1}=6, v_{2,4}=1, v_{2,5}=9 \\
& v_{2,6}=5, v_{3,2}=9, v_{3,3}=8, v_{3,8}=6, v_{4,1}=8, v_{4,5}=6, \ldots
\end{aligned}
$$

Constraints for fixed cells

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- Integer variables:

$$
\begin{aligned}
& v_{1,1}=5, v_{1,2}=3, v_{1,5}=7, v_{2,1}=6, v_{2,4}=1, v_{2,5}=9 \\
& v_{2,6}=5, v_{3,2}=9, v_{3,3}=8, v_{3,8}=6, v_{4,1}=8, v_{4,5}=6, \ldots
\end{aligned}
$$

- Propositional variables:

$$
\begin{gathered}
v_{1,1,5}=1, v_{1,2,3}=1, v_{1,5,7}=1, v_{2,1,6}=1, v_{2,4,1}=1, v_{2,5,9}=1 \\
v_{2,6,5}=1, v_{3,2,9}=1, v_{3,3,8}=1, v_{3,8,6}=1, v_{4,1,8}=1, v_{4,5,6}=1, \ldots
\end{gathered}
$$

Sudoku with PySAT

Demo

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

How to translate to CNF?

How to translate to CNF?

- Obs: There are no CNF formulas

How to translate to CNF?

- Obs: There are no CNF formulas
- Standard textbook solution
- Operator elimination; De Morgan's laws, remove double negations \& apply distributivity
- Worst-case exponential
- Set of variables constant

How to translate to CNF?

- Obs: There are no CNF formulas
- Standard textbook solution
- Operator elimination; De Morgan's laws, remove double negations \& apply distributivity
- Worst-case exponential
- Set of variables constant
- Tseitin's translation \& variants
- New variables added
- Satisfiability is preserved
- Linear size transformation

Representing Boolean formulas / circuits I

- Satisfiability problems can be defined on Boolean circuits/formulas
- Can use any logic connective: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \ldots$
- Can represent circuits/formulas as CNF formulas
[Tse68, PG86]
- For each (simple) gate, CNF formula encodes the consistent assignments to the gate's inputs and output
- Given $z=\operatorname{OP}(x, y)$, represent in CNF $z \leftrightarrow \operatorname{OP}(x, y)$
- CNF formula for the circuit is the conjunction of CNF formula for each gate

$$
\mathcal{F}_{c}=(a \vee c) \wedge(b \vee c) \wedge(\bar{a} \vee \bar{b} \vee \bar{c})
$$

$$
\mathcal{F}_{t}=(\bar{r} \vee t) \wedge(\bar{s} \vee t) \wedge(r \vee s \vee \bar{t})
$$

Representing Boolean formulas / circuits II

$$
\begin{aligned}
\begin{array}{|ccc|c|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathcal{F}_{c}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline \mathcal{F}_{c} & =(a \vee c) \wedge(b \vee c) \wedge(\bar{a} \vee \bar{b} \vee \bar{c})
\end{array}
\end{aligned}
$$

Representing Boolean formulas / circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

Representing Boolean formulas / circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

$$
\begin{aligned}
a-\text { NAND } O & \frac{x}{c} \text { AND } \frac{y}{d}= \\
& (a \vee x) \wedge(b \vee x) \wedge(\bar{a} \vee \bar{b} \vee \bar{x}) \wedge \\
& (x \vee \bar{y}) \wedge(c \vee \bar{y}) \wedge(\bar{x} \vee \bar{c} \vee y) \wedge \\
& (\bar{y} \vee z) \wedge(\bar{d} \vee z) \wedge(y \vee d \vee \bar{z}) \wedge(z)
\end{aligned}
$$

- Note: $z=d \vee(c \wedge(\neg(a \wedge b)))$
- No distinction between Boolean circuits and (non-clausal) formulas, besides adding new variables

Representing Boolean formulas / circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

$$
\begin{aligned}
a-\text { NAND } O & \frac{x}{c} \text { AND } \frac{y}{d}= \\
& (a \vee x) \wedge(b \vee x) \wedge(\bar{a} \vee \bar{b} \vee \bar{x}) \wedge \\
& (x \vee \bar{y}) \wedge(c \vee \bar{y}) \wedge(\bar{x} \vee \bar{c} \vee y) \wedge \\
& (\bar{y} \vee z) \wedge(\bar{d} \vee z) \wedge(y \vee d \vee \bar{z}) \wedge(z)
\end{aligned}
$$

- Note: $z=d \vee(c \wedge(\neg(a \wedge b)))$
- No distinction between Boolean circuits and (non-clausal) formulas, besides adding new variables
- Easy to do more structures: ITEs; Adders; etc.

Quiz - how to encode a 100 input gate?

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...
- For any x_{i}, if $x_{i}=0$, then $z=0$

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...
- For any x_{i}, if $x_{i}=0$, then $z=0$, i.e. $\neg x_{i} \rightarrow \neg z$

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...
- For any x_{i}, if $x_{i}=0$, then $z=0$, i.e. $\neg x_{i} \rightarrow \neg z$
- If for all $i x_{i}=1$, then $z=1$

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...
- For any x_{i}, if $x_{i}=0$, then $z=0$, i.e. $\neg x_{i} \rightarrow \neg z$
- If for all $i x_{i}=1$, then $z=1$, i.e. $\wedge_{i} x_{i} \rightarrow z$

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...
- For any x_{i}, if $x_{i}=0$, then $z=0$, i.e. $\neg x_{i} \rightarrow \neg z$
- If for all $i x_{i}=1$, then $z=1$, i.e. $\wedge_{i} x_{i} \rightarrow z$
- Resulting CNF encoding:

$$
\bigwedge_{i=1}^{100}\left(x_{i} \vee \bar{z}\right) \wedge\left(\overline{x_{1}} \vee \cdots \vee \overline{x_{100}} \vee z\right)
$$

Quiz - how to encode a 100 input gate?

- Impractical to create the truth table...
- For any x_{i}, if $x_{i}=0$, then $z=0$, i.e. $\neg x_{i} \rightarrow \neg z$
- If for all $i x_{i}=1$, then $z=1$, i.e. $\wedge_{i} x_{i} \rightarrow z$
- Resulting CNF encoding:

$$
\bigwedge_{i=1}^{100}\left(x_{i} \vee \bar{z}\right) \wedge\left(\overline{x_{1}} \vee \cdots \vee \overline{x_{100}} \vee z\right)
$$

- Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

Hard vs. soft constraints

- Hard: Constraints that must be satisfied

Hard vs. soft constraints

- Hard: Constraints that must be satisfied
- Soft: Constraints that we would like to satisfy, if possible
- Associate a cost (can be unit) with falsifying each soft constraint
- For a hard constraint, the cost can be viewed as ∞

Hard vs. soft constraints

- Hard: Constraints that must be satisfied
- Soft: Constraints that we would like to satisfy, if possible
- Associate a cost (can be unit) with falsifying each soft constraint
- For a hard constraint, the cost can be viewed as ∞
- An example:
- How to model linear cost function optimization?

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \varphi
\end{array}
$$

Hard vs. soft constraints

- Hard: Constraints that must be satisfied
- Soft: Constraints that we would like to satisfy, if possible
- Associate a cost (can be unit) with falsifying each soft constraint
- For a hard constraint, the cost can be viewed as ∞
- An example:
- How to model linear cost function optimization?

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \varphi
\end{array}
$$

- Hard constraints: φ

Hard vs. soft constraints

- Hard: Constraints that must be satisfied
- Soft: Constraints that we would like to satisfy, if possible
- Associate a cost (can be unit) with falsifying each soft constraint
- For a hard constraint, the cost can be viewed as ∞
- An example:
- How to model linear cost function optimization?

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \varphi
\end{array}
$$

- Hard constraints: φ
- Soft constraints: $\left(\bar{x}_{j}\right)$, each with cost c_{j}

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

Linear constraints

- Cardinality constraints: $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$

Linear constraints

- Cardinality constraints: $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Pseudo-Boolean constraints: $\sum_{j=1}^{n} a_{j} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$

Linear constraints

- Cardinality constraints: $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Pseudo-Boolean constraints: $\sum_{j=1}^{n} a_{j} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- If variables are non-Boolean, e.g. with finite domain
- Need to encode variables

Equals1, AtLeast1 \& AtMost1 constraints

- $\sum_{j=1}^{n} x_{j}=1:$ encode with $\left(\sum_{j=1}^{n} x_{j} \leq 1\right) \wedge\left(\sum_{j=1}^{n} x_{j} \geq 1\right)$
- $\sum_{j=1}^{n} x_{j} \geq 1$: encode with $\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right)$
- $\sum_{j=1}^{n} x_{j} \leq 1$ encode with:
- Pairwise encoding
- Clauses: $\mathcal{O}\left(n^{2}\right)$; No auxiliary variables
- Sequential counter
- Clauses: $\mathcal{O}(n)$; Auxiliary variables: $\mathcal{O}(n)$
- Bitwise encoding
- Clauses: $\mathcal{O}(n \log n)$; Auxiliary variables: $\mathcal{O}(\log n)$
- ...

Pairwise encoding

- How to (propositionally) encode AtMost1 constraint

$$
a+b+c+d \leq 1 ?
$$

Pairwise encoding

- How to (propositionally) encode AtMost1 constraint

$$
a+b+c+d \leq 1 ?
$$

$$
\begin{aligned}
& a \rightarrow \bar{b} \wedge \bar{c} \wedge \bar{d} \Longrightarrow(\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee \bar{c}) \wedge(\bar{a} \vee \bar{d}) \\
& b \rightarrow \bar{c} \wedge \bar{d} \wedge \bar{a} \Longrightarrow(\bar{b} \vee \bar{c}) \wedge(\bar{b} \vee \bar{d}) \wedge(\bar{b} \vee \bar{a}) \\
& c \rightarrow \bar{d} \wedge \bar{a} \wedge \bar{b} \Longrightarrow(\bar{c} \vee \bar{d}) \wedge(\bar{c} \vee \bar{a}) \wedge(\bar{c} \vee \bar{b}) \\
& d \rightarrow \bar{a} \wedge \bar{b} \wedge \bar{c} \Longrightarrow(\bar{d} \vee \bar{a}) \wedge(\bar{d} \vee \bar{b}) \wedge(\bar{d} \vee \bar{c})
\end{aligned}
$$

- Encoded as: $(\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee \bar{c}) \wedge(\bar{a} \vee \bar{d}) \wedge(\bar{b} \vee \bar{c}) \wedge(\bar{b} \vee \bar{d}) \wedge(\bar{c} \vee \bar{d})$

Pairwise encoding

- How to (propositionally) encode AtMost1 constraint

$$
a+b+c+d \leq 1 ?
$$

$$
\begin{array}{ll}
a \rightarrow \bar{b} \wedge \bar{c} \wedge \bar{d} \Longrightarrow & (\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee \bar{c}) \wedge(\bar{a} \vee \bar{d}) \\
b \rightarrow \bar{c} \wedge \bar{d} \wedge \bar{a} \Longrightarrow(\bar{b} \vee \bar{c}) \wedge(\bar{b} \vee \bar{d}) \wedge(\bar{b} \vee \bar{a}) \\
c \rightarrow \bar{d} \wedge \bar{a} \wedge \bar{b} \Longrightarrow(\bar{c} \vee \bar{d}) \wedge(\bar{c} \vee \bar{a}) \wedge(\bar{c} \vee \bar{b}) \\
d \rightarrow \bar{a} \wedge \bar{b} \wedge \bar{c} \Longrightarrow(\bar{d} \vee \bar{a}) \wedge(\bar{d} \vee \bar{b}) \wedge(\bar{d} \vee \bar{c})
\end{array}
$$

- Encoded as: $(\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee \bar{c}) \wedge(\bar{a} \vee \bar{d}) \wedge(\bar{b} \vee \bar{c}) \wedge(\bar{b} \vee \bar{d}) \wedge(\bar{c} \vee \bar{d})$
- With N variables, number of clauses becomes $\frac{n(n-1)}{2}$
- But no additional variables

Sequential counter encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with sequential counter:

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee s_{1}\right) \wedge\left(\bar{x}_{n} \vee \bar{s}_{n-1}\right) \wedge \\
& \bigwedge_{1<i<n}\left(\left(\bar{x}_{i} \vee s_{i}\right) \wedge\left(\bar{s}_{i-1} \vee s_{i}\right) \wedge\left(\bar{x}_{i} \vee \bar{s}_{i-1}\right)\right)
\end{aligned}
$$

- If some $x_{j}=1$, then all s_{i} variables must be assigned
- $s_{i}=1$ for $i \geq j$, and so $x_{i}=0$ for $i>j$
- $s_{i}=0$ for $i<j$, and so $x_{i}=0$ for $i<j$
- Thus, all other x_{i} variables must take value 0
- If all $x_{j}=0$, can find consistent assignment to s_{i} variables
- $\mathcal{O}(n)$ clauses ; $\mathcal{O}(n)$ auxiliary variables

Bitwise encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

Bitwise encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

Bitwise encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- Clauses $\left(\bar{x}_{j} \vee\left(v_{i} \leftrightarrow b_{i}\right)\right)=\left(\bar{x}_{j} \vee I_{i}\right), i=0, \ldots, r-1$, where
- $I_{i} \equiv v_{i}$, if $b_{i}=1$
- $l_{i} \equiv \bar{v}_{i}$, otherwise
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{v}_{0}\right) \\
& \left(\bar{x}_{2} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{2} \vee v_{0}\right) \\
& \left(\bar{x}_{3} \vee v_{1}\right) \wedge\left(\bar{x}_{3} \vee \bar{v}_{0}\right)
\end{aligned}
$$

Bitwise encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$

$$
x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)
$$

- Clauses $\left(\bar{x}_{j} \vee\left(v_{i} \leftrightarrow b_{i}\right)\right)=\left(\bar{x}_{j} \vee I_{i}\right), i=0, \ldots, r-1$, where
- $I_{i} \equiv v_{i}$, if $b_{i}=1$
- $l_{i} \equiv \bar{v}_{i}$, otherwise
- If $x_{j}=1$, assignment to v_{i} variables must encode $j-1$
- For consistency, all other x variables must not take value 1
- If all $x_{j}=0$, any assignment to v_{i} variables is consistent
- $\mathcal{O}(n \log n)$ clauses ; $\mathcal{O}(\log n)$ auxiliary variables
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{v}_{0}\right) \\
& \left(\bar{x}_{2} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{2} \vee v_{0}\right) \\
& \left(\bar{x}_{3} \vee v_{1}\right) \wedge\left(\bar{x}_{3} \vee \bar{v}_{0}\right)
\end{aligned}
$$

General cardinality constraints

- General form: $\sum_{j=1}^{n} x_{j} \leq k\left(\right.$ or $\left.\sum_{j=1}^{n} x_{j} \geq k\right)$
- Operational encoding
- Clauses/Variables: $\mathcal{O}(n)$
- Does not ensure arc-consistency
- Generalized pairwise
- Clauses: $\mathcal{O}\left(2^{n}\right)$; no auxiliary variables
- Sequential counters
- Clauses/Variables: $\mathcal{O}(n k)$
- BDDs
- Clauses/Variables: $\mathcal{O}(n k)$
- Sorting networks
- Clauses/Variables: $\mathcal{O}\left(n \log ^{2} n\right)$
- Cardinality Networks:
- Clauses/Variables: $\mathcal{O}\left(n \log ^{2} k\right)$
- Pairwise Cardinality Networks:

Generalized pairwise encoding

- General form: $\sum_{j=1}^{n} x_{j} \leq k$
- Any combination of $k+1$ true variables is disallowed

Generalized pairwise encoding

- General form: $\sum_{j=1}^{n} x_{j} \leq k$
- Any combination of $k+1$ true variables is disallowed
- Example: $a+b+c+d \leq 2$

Generalized pairwise encoding

- General form: $\sum_{j=1}^{n} x_{j} \leq k$
- Any combination of $k+1$ true variables is disallowed
- Example: $a+b+c+d \leq 2$

$$
\begin{aligned}
& a \wedge b \rightarrow \bar{c} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{c}) \\
& a \wedge b \rightarrow \bar{d} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{d}) \\
& a \wedge c \rightarrow \bar{d} \Longrightarrow(\bar{a} \vee \bar{c} \vee \bar{d}) \\
& b \wedge c \rightarrow \bar{d} \Longrightarrow(\bar{b} \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

- Encoded as: $(\bar{a} \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee \bar{d})$

Generalized pairwise encoding

- General form: $\sum_{j=1}^{n} x_{j} \leq k$
- Any combination of $k+1$ true variables is disallowed
- Example: $a+b+c+d \leq 2$

$$
\begin{aligned}
& a \wedge b \rightarrow \bar{c} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{c}) \\
& a \wedge b \rightarrow \bar{d} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{d}) \\
& a \wedge c \rightarrow \bar{d} \Longrightarrow(\bar{a} \vee \bar{c} \vee \bar{d}) \\
& b \wedge c \rightarrow \bar{d} \Longrightarrow(\bar{b} \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

- Encoded as: $(\bar{a} \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee \bar{d})$
- In general, number of clauses is C_{k+1}^{n}
- Recall: for AtMost1 (i.e. for $k=1$), number of clauses is: $\frac{n(n-1)}{2}$

Another example

- Example: $a+b+c+d+e \leq 2$
- Encoding will contain $C_{3}^{5}=10$ clauses:

$$
\begin{aligned}
& a \wedge b \rightarrow \bar{c} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{c}) \\
& a \wedge b \rightarrow \bar{d} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{d}) \\
& a \wedge b \rightarrow \bar{e} \Longrightarrow(\bar{a} \vee \bar{b} \vee \bar{e}) \\
& a \wedge c \rightarrow \bar{d} \Longrightarrow(\bar{a} \vee \bar{c} \vee \bar{d}) \\
& a \wedge c \rightarrow \bar{e} \Longrightarrow(\bar{a} \vee \bar{c} \vee \bar{e}) \\
& a \wedge d \rightarrow \bar{e} \Longrightarrow(\bar{a} \vee \bar{d} \vee \bar{e}) \\
& b \wedge c \rightarrow \bar{d} \Longrightarrow(\bar{b} \vee \bar{c} \vee \bar{d}) \\
& b \wedge c \rightarrow \bar{e} \Longrightarrow(\bar{b} \vee \bar{c} \vee \bar{e}) \\
& b \wedge d \rightarrow \bar{e} \Longrightarrow(\bar{b} \vee \bar{d} \vee \bar{e}) \\
& c \wedge d \rightarrow \bar{e} \Longrightarrow(\bar{c} \vee \bar{d} \vee \bar{e})
\end{aligned}
$$

Sequential counter - revisited I

- Encode $\sum_{j=1}^{n} x_{j} \leq k$ with sequential counter:

- Equations for each block $1<i<n, 1<j<k$:

$$
\begin{array}{ll}
s_{i}=\sum_{j=1}^{i} x_{j} & s_{i, 1}=s_{i-1,1} \vee x_{i} \\
s_{i} \text { represented in unary } & s_{i, j}=s_{i-1, j} \vee s_{i-1, j-1} \wedge x_{i} \\
& v_{i}=\left(s_{i-1, k} \wedge x_{i}\right)=0
\end{array}
$$

Sequential counter - revisited II

- CNF formula for $\sum_{j=1}^{n} x_{j} \leq k$:
- Assume: $k>0 \wedge n>1$
- Indeces: $1<i<n, 1<j \leq k$

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{1,1}\right) \\
& \left(\neg s_{1, j}\right) \\
& \left(\neg x_{i} \vee s_{i, 1}\right) \\
& \left(\neg s_{i-1,1} \vee s_{i, 1}\right) \\
& \left(\neg x_{i} \vee \neg s_{i-1, j-1} \vee s_{i, j}\right) \\
& \left(\neg s_{i-1, j} \vee s_{i, j}\right) \\
& \left(\neg x_{i} \vee \neg \neg s_{i-1, k}\right) \\
& \left(\neg x_{n} \vee \neg s_{n-1, k}\right)
\end{aligned}
$$

- $\mathcal{O}(n k)$ clauses \& variables

Pseudo-Boolean constraints

- General form: $\sum_{j=1}^{n} a_{j} x_{j} \leq b$
- Operational encoding
- Clauses/Variables: $\mathcal{O}(n)$
- Does not guarantee arc-consistency
- BDDs
- Worst-case exponential number of clauses

Pseudo-Boolean constraints

- General form: $\sum_{j=1}^{n} a_{j} x_{j} \leq b$
- Operational encoding
- Clauses/Variables: $\mathcal{O}(n)$
- Does not guarantee arc-consistency
- BDDs
- Worst-case exponential number of clauses
- Polynomial watchdog encoding
- Let $\nu(n)=\log (n) \log \left(a_{\max }\right)$
- Clauses: $\mathcal{O}\left(n^{3} \nu(n)\right)$; Aux variables: $\mathcal{O}\left(n^{2} \nu(n)\right)$

Pseudo-Boolean constraints

- General form: $\sum_{j=1}^{n} a_{j} x_{j} \leq b$
- Operational encoding
- Clauses/Variables: $\mathcal{O}(n)$
- Does not guarantee arc-consistency
- BDDs
- Worst-case exponential number of clauses
- Polynomial watchdog encoding
- Let $\nu(n)=\log (n) \log \left(a_{\max }\right)$
- Clauses: $\mathcal{O}\left(n^{3} \nu(n)\right)$; Aux variables: $\mathcal{O}\left(n^{2} \nu(n)\right)$
- Improved polynomial watchdog encoding
- Clauses \& aux variables: $\mathcal{O}\left(n^{3} \log \left(a_{\max }\right)\right)$

Encoding PB constraints with BDDs I

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Construct BDD
- E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB constraints with BDDs I

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Construct BDD
- E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB constraints with BDDs II

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Extract ITE-based circuit from BDD
- Simplify and create final circuit:

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a knapsack constraint

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a knapsack constraint
- Cannot find all consequences in polynomial time
[FS02, Tri03, Sel03] (Otherwise $\mathrm{P}=\mathrm{NP}$)

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a knapsack constraint
- Cannot find all consequences in polynomial time
[FS02, Tri03, Sel03] (Otherwise $\mathrm{P}=\mathrm{NP}$)
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a knapsack constraint
- Cannot find all consequences in polynomial time (Otherwise $\mathrm{P}=\mathrm{NP}$)
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

- Replace by $\left(4 x_{1}+3 x_{2}+2 x_{3} \geq 5\right) \wedge\left(4 x_{1}+3 x_{2}+2 x_{3} \leq 5\right)$

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a knapsack constraint
- Cannot find all consequences in polynomial time
[FS02, Tri03, Sel03] (Otherwise $\mathrm{P}=\mathrm{NP}$)
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

- Replace by $\left(4 x_{1}+3 x_{2}+2 x_{3} \geq 5\right) \wedge\left(4 x_{1}+3 x_{2}+2 x_{3} \leq 5\right)$
- Let $x_{2}=0$

More on PB constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a knapsack constraint
- Cannot find all consequences in polynomial time (Otherwise $\mathrm{P}=\mathrm{NP}$)
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

- Replace by $\left(4 x_{1}+3 x_{2}+2 x_{3} \geq 5\right) \wedge\left(4 x_{1}+3 x_{2}+2 x_{3} \leq 5\right)$
- Let $x_{2}=0$
- Either constraint can still be satisfied, but not both

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

CSP constraints

- Many possible encodings:
- Direct encoding
- Log encoding
- Support encoding
- Log-Support encoding
- Order encoding for finite linear CSPs

Direct encoding for CSP w/ binary constraints

- Variable x_{i} with domain D_{i}, with $m_{i}=\left|D_{i}\right|$
- Constraints are relations over domains of variables
- For a constraint over x_{1}, \ldots, x_{k}, define relation $R \subseteq D_{1} \times \cdots \times D_{k}$
- Need to encode elements not in the relation
- For a binary relation, use set of binary clauses, one for each element not in R
- Represent values of x_{i} with Boolean variables $x_{i, 1}, \ldots, x_{i, m_{i}}$
- Require $\sum_{k=1}^{m_{i}} x_{i, k}=1$
- Suffices to require $\sum_{k=1}^{m_{i}} x_{i, k} \geq 1$
- If the pair of assignments $x_{i}=v_{i} \wedge x_{j}=v_{j}$ is not allowed, add binary clause $\left(\bar{x}_{i, v_{i}} \vee \bar{x}_{j, v_{j}}\right)$

Additional topics

- Encoding problems to SAT is ubiquitous:
- Many more encodings of finite domain CSP into SAT
- Encodings of Answer Set Programming (ASP) into SAT
- Eager SMT solving
- Theorem provers iteratively encode problems into SAT
- Model finders interatively encode problems into SAT
- ...

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples

Minimum vertex cover

- The problem:
- Graph $G=(V, E)$
- Vertex cover $U \subseteq V$
- For each $\left(v_{i}, v_{j}\right) \in E$, either $v_{i} \in U$ or $v_{j} \in U$
- Minimum vertex cover: vertex cover U of minimum size

Minimum vertex cover

- The problem:
- Graph $G=(V, E)$
- Vertex cover $U \subseteq V$
- For each $\left(v_{i}, v_{j}\right) \in E$, either $v_{i} \in U$ or $v_{j} \in U$
- Minimum vertex cover: vertex cover U of minimum size

Vertex cover: $\left\{v_{2}, v_{3}, v_{4}\right\}$

Minimum vertex cover

- The problem:
- Graph $G=(V, E)$
- Vertex cover $U \subseteq V$
- For each $\left(v_{i}, v_{j}\right) \in E$, either $v_{i} \in U$ or $v_{j} \in U$
- Minimum vertex cover: vertex cover U of minimum size

Vertex cover: $\left\{v_{2}, v_{3}, v_{4}\right\}$
Min vertex cover: $\left\{v_{1}\right\}$

Minimum vertex cover

- Modeling with Pseudo-Boolean Optimization (PBO):
- Variables: x_{i} for each $v_{i} \in V$, with $x_{i}=1$ iff $v_{i} \in U$
- Clauses: $\left(x_{i} \vee x_{j}\right)$ for each $\left(v_{i}, v_{j}\right) \in E$
- Objective function: minimize number of true x_{i} variables
- I.e. minimize vertices included in U

Minimum vertex cover

- Modeling with Pseudo-Boolean Optimization (PBO):
- Variables: x_{i} for each $v_{i} \in V$, with $x_{i}=1$ iff $v_{i} \in U$
- Clauses: $\left(x_{i} \vee x_{j}\right)$ for each $\left(v_{i}, v_{j}\right) \in E$
- Objective function: minimize number of true x_{i} variables
- I.e. minimize vertices included in U

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+x_{2}+x_{3}+x_{4} \\
\text { subject to } & \left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right)
\end{array}
$$

Minimum vertex cover

- Modeling with Pseudo-Boolean Optimization (PBO):
- Variables: x_{i} for each $v_{i} \in V$, with $x_{i}=1$ iff $v_{i} \in U$
- Clauses: $\left(x_{i} \vee x_{j}\right)$ for each $\left(v_{i}, v_{j}\right) \in E$
- Objective function: minimize number of true x_{i} variables
- I.e. minimize vertices included in U

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+x_{2}+x_{3}+x_{4} \\
\text { subject to } & \left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right)
\end{array}
$$

- Alternative propositional encoding:

$$
\begin{aligned}
\varphi_{S} & =\left\{\left(\neg x_{1}\right),\left(\neg x_{2}\right),\left(\neg x_{3}\right),\left(\neg x_{4}\right)\right\} \\
\varphi_{H} & =\left\{\left(x_{1} \vee x_{2}\right),\left(x_{1} \vee x_{3}\right),\left(x_{1} \vee x_{4}\right)\right\}
\end{aligned}
$$

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?
- $x_{i, j}=1$ iff vertex $v_{i} \in V$ is assigned color $j \in\{1, \ldots, k\}$

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?
- $x_{i, j}=1$ iff vertex $v_{i} \in V$ is assigned color $j \in\{1, \ldots, k\}$
- How to model adjacent vertices with different colors?

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?
- $x_{i, j}=1$ iff vertex $v_{i} \in V$ is assigned color $j \in\{1, \ldots, k\}$
- How to model adjacent vertices with different colors?
- $\left(\neg x_{i, j} \vee \neg x_{l, j}\right)$ if $\left(v_{i}, v_{l}\right) \in E$, with $j \in\{1, \ldots, k\}$

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?
- $x_{i, j}=1$ iff vertex $v_{i} \in V$ is assigned color $j \in\{1, \ldots, k\}$
- How to model adjacent vertices with different colors?

$$
-\left(\neg x_{i, j} \vee \neg x_{l, j}\right) \text { if }\left(v_{i}, v_{l}\right) \in E \text {, with } j \in\{1, \ldots, k\}
$$

- How to model vertices get some color?

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?
- $x_{i, j}=1$ iff vertex $v_{i} \in V$ is assigned color $j \in\{1, \ldots, k\}$
- How to model adjacent vertices with different colors?
- $\left(\neg x_{i, j} \vee \neg x_{l, j}\right)$ if $\left(v_{i}, v_{l}\right) \in E$, with $j \in\{1, \ldots, k\}$
- How to model vertices get some color?
$-\sum_{j \in\{1, \ldots, k\}} x_{i, j}=1$, for $v_{i} \in V$

Graph coloring

- Given undirected graph $G=(V, E)$ and k colors:
- Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different colors?

Valid coloring

Invalid coloring

- How to model color assignments to vertices?
- $x_{i, j}=1$ iff vertex $v_{i} \in V$ is assigned color $j \in\{1, \ldots, k\}$
- How to model adjacent vertices with different colors?
- $\left(\neg x_{i, j} \vee \neg x_{l, j}\right)$ if $\left(v_{i}, v_{l}\right) \in E$, with $j \in\{1, \ldots, k\}$
- How to model vertices get some color?
$-\sum_{j \in\{1, \ldots, k\}} x_{i, j}=1$, for $v_{i} \in V$
- Note: it suffices to use $\left(\bigvee_{j \in\{1, \ldots, k\}} x_{i, j}\right)$

The N -Queens problem I

- The N-Queens Problem: Place N queens on a $N \times N$ board, such that no two queens attack each other
- Example for a 5×5 board:

The N-Queens problem II

- $x_{i j}$: 1 if queen placed in position (i, j); 0 otherwise
- Each row must have exactly one queen:

$$
1 \leq i \leq N, \quad \sum_{j=1}^{N} x_{i j}=1
$$

- Each column must have exactly one queen:

$$
1 \leq j \leq N, \quad \sum_{i=1}^{N} x_{i j}=1
$$

- Also, need to define constraints on diagonals...

The N-Queens problem III

- Each diagonal can have at most one queen:

$$
\begin{aligned}
& i=1, \quad 2 \leq j<N, \quad \sum_{k=0}^{j-1} x_{i+k} j-k \leq 1 \\
& i=N, \quad 1 \leq j<N, \quad \sum_{k=0}^{N-j} x_{i-k}{ }^{2}+k \leq 1 \\
& j=1, \quad 1 \leq i<N, \quad \sum_{k=0}^{N-i} x_{i+k}{ }^{2}+k \leq 1 \\
& j=N, \quad 2 \leq i<N, \quad \sum_{k=0}^{i-1} x_{i-k j-k} \leq 1
\end{aligned}
$$

Design debugging

Correct circuit

Input stimuli: $\langle r, s\rangle=\langle 0,1\rangle$
Valid output: $\langle y, z\rangle=\langle 0,0\rangle$

- The model:
- Hard clauses: Input and output values
- Soft clauses: CNF representation of circuit
- The problem:
- Maximize number of satisfied clauses (i.e. circuit gates)

Software package upgrades

- Universe of software packages: $\left\{p_{1}, \ldots, p_{n}\right\}$
- Associate x_{i} with $p_{i}: x_{i}=1$ iff p_{i} is installed
- Constraints associated with package $p_{i}:\left(p_{i}, D_{i}, C_{i}\right)$
- D_{i} : dependencies (required packages) for installing p_{i}
- C_{i} : conflicts (disallowed packages) for installing p_{i}
- Example problem: Maximum Installability
- Maximum number of packages that can be installed
- Package constraints represent hard clauses
- Soft clauses: $\left(x_{i}\right)$

Package constraints:
$\left(p_{1},\left\{p_{2} \vee p_{3}\right\},\left\{p_{4}\right\}\right)$
($\left.p_{2},\left\{p_{3}\right\},\left\{p_{4}\right\}\right)$
($\left.p_{3},\left\{p_{2}\right\}, \emptyset\right)$
$\left(p_{4},\left\{p_{2}, p_{3}\right\}, \emptyset\right)$

Software package upgrades

[MBC ${ }^{+}$06, TSJL07, AL08, ALS09, ABL^{+}10b]

- Universe of software packages: $\left\{p_{1}, \ldots, p_{n}\right\}$
- Associate x_{i} with $p_{i}: x_{i}=1$ iff p_{i} is installed
- Constraints associated with package $p_{i}:\left(p_{i}, D_{i}, C_{i}\right)$
- D_{i} : dependencies (required packages) for installing p_{i}
- C_{i} : conflicts (disallowed packages) for installing p_{i}
- Example problem: Maximum Installability
- Maximum number of packages that can be installed
- Package constraints represent hard clauses
- Soft clauses: $\left(x_{i}\right)$

Package constraints:

$$
\begin{aligned}
& \left(p_{1},\left\{p_{2} \vee p_{3}\right\},\left\{p_{4}\right\}\right) \\
& \left(p_{2},\left\{p_{3}\right\},\left\{p_{4}\right\}\right) \\
& \left(p_{3},\left\{p_{2}\right\}, \emptyset\right) \\
& \left(p_{4},\left\{p_{2}, p_{3}\right\}, \emptyset\right)
\end{aligned}
$$

MaxSAT formulation:

$$
\begin{aligned}
\varphi_{H}= & \left\{\left(\neg x_{1} \vee x_{2} \vee x_{3}\right),\left(\neg x_{1} \vee \neg x_{4}\right),\right. \\
& \left(\neg x_{2} \vee x_{3}\right),\left(\neg x_{2} \vee \neg x_{4}\right),\left(\neg x_{3} \vee x_{2}\right), \\
& \left.\left(\neg x_{4} \vee x_{2}\right),\left(\neg x_{4} \vee x_{3}\right)\right\} \\
\varphi_{S}= & \left\{\left(x_{1}\right),\left(x_{2}\right),\left(x_{3}\right),\left(x_{4}\right)\right\}
\end{aligned}
$$

The knapsack problem

- Given list of pairs $\left(v_{i}, w_{i}\right), i=1, \ldots, n$
- Each pair $\left(v_{i}, w_{i}\right)$, represents the value and weight of object i

The knapsack problem

- Given list of pairs $\left(v_{i}, w_{i}\right), i=1, \ldots, n$
- Each pair (v_{i}, w_{i}), represents the value and weight of object i
- Pick subset of objects with the maximum sum of values, such that the sum of weights does not exceed W

The knapsack problem

- Given list of pairs $\left(v_{i}, w_{i}\right), i=1, \ldots, n$
- Each pair (v_{i}, w_{i}), represents the value and weight of object i
- Pick subset of objects with the maximum sum of values, such that the sum of weights does not exceed W
- Propositional encoding for the knapsack problem?

The knapsack problem

- Given list of pairs $\left(v_{i}, w_{i}\right), i=1, \ldots, n$
- Each pair (v_{i}, w_{i}), represents the value and weight of object i
- Pick subset of objects with the maximum sum of values, such that the sum of weights does not exceed W
- Propositional encoding for the knapsack problem?
- Solution: consider 0-1 ILP (or PBO) formulation:
- Associate propositional variable x_{i} with each objet i
- $x_{i}=1$ iff object i is picked

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} v_{i} \cdot x_{i} \\
\text { s.t } & \sum_{i=1}^{n} w_{i} \cdot x_{i} \leq W
\end{array}
$$

Part 3

Problem Solving with SAT Oracles

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:
- Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$
- Consider $\mathcal{F} \wedge\left(x_{i}\right)$. Call NP oracle. If answer is yes, then add $\left(x_{i}\right)$ to \mathcal{F}. If answer is no, then add $\left(\neg x_{i}\right)$ to \mathcal{F}

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:
- Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$
- Consider $\mathcal{F} \wedge\left(x_{i}\right)$. Call NP oracle. If answer is yes, then add $\left(x_{i}\right)$ to \mathcal{F}. If answer is no, then add $\left(\neg x_{i}\right)$ to \mathcal{F}
- Algorithm needs $|\operatorname{var}(\mathcal{F})|$ calls to an NP oracle

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:
- Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$
- Consider $\mathcal{F} \wedge\left(x_{i}\right)$. Call NP oracle. If answer is yes, then add $\left(x_{i}\right)$ to \mathcal{F}. If answer is no, then add $\left(\neg x_{i}\right)$ to \mathcal{F}
- Algorithm needs $|\operatorname{var}(\mathcal{F})|$ calls to an NP oracle
- Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless $P=N P$
- FSAT is an example of a function problem

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:
- Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$
- Consider $\mathcal{F} \wedge\left(x_{i}\right)$. Call NP oracle. If answer is yes, then add $\left(x_{i}\right)$ to \mathcal{F}. If answer is no, then add $\left(\neg x_{i}\right)$ to \mathcal{F}
- Algorithm needs $|\operatorname{var}(\mathcal{F})|$ calls to an NP oracle
- Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless $P=N P$
- FSAT is an example of a function problem
- Note: FSAT can be solved with one SAT oracle call

Beyond decision problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems
\# solutions	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems
\# solutions	Counting Problems

... and beyond NP - decision and function problems

$$
\Delta_{0}^{\mathrm{p}}=\Sigma_{0}^{\mathrm{p}}=\mathrm{P}=\Pi_{0}^{\mathrm{p}}=\Delta_{1}^{\mathrm{p}}
$$

Oracle-based problem solving - ideal scenario

Oracle-based problem solving - in some settings

Many problems to solve - within FP ${ }^{N P}$

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Many problems to solve - within FP ${ }^{N P}$

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Function Problems on Propositional Formulas		
MaxSAT PBO	WBO	MinSAT
Minimal Models Prime Implicants		
Maximal Models		Autarkies
Backbones	Prime Implicates	
muSes MCSes	MESes	Indep. Vars
MFSes MSSes	MDSes	Implicant Ext.
	MNSes Im	mplicate Ext.
MCFSes		

Many problems to solve - within $\mathrm{FP}^{N P}$

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Selection of topics

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	$11: 00-12: 00$	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
\ldots	(hundreds of consistent constraints)		

- Set of constraints consistent / satisfiable?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	$11: 00-12: 00$	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
\ldots	(hundreds of consistent constraints)		

- Set of constraints consistent / satisfiable? No

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	$11: 00-12: 00$	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
$\quad \ldots$ (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro Al	Tue	10:00-11:00	8.2 .37
Databases	Tue	$11: 00-12: 00$	8.2 .37
Linear Alg	Mon	9:00-10:00	6.2 .46
Calculus	Tue	10:00-11:00	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
$\quad \ldots$ (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	9:00-10:00	6.2 .46
Intro AI	Tue	$10: 00-11: 00$	8.2 .37
Databases	Tue	$11: 00-12: 00$	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2 .46		
Intro AI	Tue	10:00-11:00	8.2 .37		
Databases	Tue	11:00-12:00	8.2 .37		
\ldots (hundreds of consistent constraints)					
Linear Alg	Mon	9:00-10:00	6.2 .46		
Calculus	Tue	10:00-11:00	8.2 .37		
Adv Calculus	Mon	9:00-10:00	8.2 .06		
... (hundreds of consistent constraints)					

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	9:00-10:00	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	$11: 00-12: 00$	8.2 .37
... (hundreds of consistent constraints)			
Linear Alg	Mon	9:00-10:00	6.2 .46
Calculus	Tue	10:00-11:00	8.2 .37
Adv Calculus	Mon	9:00-10:00	8.2 .06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?
- How to compute these minimal sets?

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \models \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \vDash \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \vDash \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- MUSes and MCSes are (subset-)minimal sets
- MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \vDash \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- MUSes and MCSes are (subset-)minimal sets
- MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]
- How to compute MUSes \& MCSes efficiently with SAT oracles?

Why it matters?

- Analysis of over-constrained systems
- Model-based diagnosis
- Software fault localization
- Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
- Type error debugging
- Axiom pinpointing in description logics
- ...
- Model checking of software \& hardware systems
- Inconsistency measurement
- Minimal models; MinCost SAT; ...
- ...
- Find minimal relaxations to recover consistency
- But also minimum relaxations to recover consistency, eg. MaxSAT
- Find minimal explanations of inconsistency
- But also minimum explanations of inconsistency, eg. Smallest MUS

Deletion-based algorithm

Input : Set \mathcal{F}
Output: Minimal subset \mathcal{M} begin

```
M}\leftarrow\mathcal{F
```

foreach $c \in \mathcal{M}$ do
if $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then
$\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\} \quad / /$ If $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$, then $c \notin \operatorname{MUS}$
return \mathcal{M}
// Final \mathcal{M} is MUS
end

- Number of oracles calls: $\mathcal{O}(m)$

Deletion-based algorithm

Input : Set \mathcal{F}
Output: Minimal subset \mathcal{M} begin

```
M}\leftarrow\mathcal{F
```

foreach $c \in \mathcal{M}$ do
if $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then
$\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\}$
return \mathcal{M}
end
// Remove c from \mathcal{M} // Final \mathcal{M} is MUS

- Number of oracles calls: $\mathcal{O}(m)$

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome			

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome			
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}			

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome			
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}			
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}			

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$
			$\left(x_{5} \vee x_{6}\right)$		
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome		
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}		
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}		
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}		

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$
			$\left(x_{5} \vee x_{6}\right)$		
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome		
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}		
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}		
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}		
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}		

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$
			$\left(x_{5} \vee x_{6}\right)$		
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome		
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}		
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}		
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}		
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}		
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}		

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$

\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}
$c_{4} . . c_{7}$	$c_{4} c_{5} c_{7}$	0	Keep c_{6}

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$
		$\left(x_{5} \vee x_{6}\right)$			
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \mathrm{SAT}(\mathcal{M} \backslash\{c\})$	Outcome		
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}		
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}		
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}		
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}		
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}		
$c_{4} . . c_{7}$	$c_{4} c_{5} c_{7}$	0	Keep c_{6}		
$c_{4} . . c_{7}$	$c_{4} . . c_{6}$	1	Drop c_{7}		

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$
		$\left(x_{5} \vee x_{6}\right)$			
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \mathrm{SAT}(\mathcal{M} \backslash\{c\})$	Outcome		
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}		
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}		
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}		
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}		
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}		
$c_{4} . . c_{7}$	$c_{4} c_{5} c_{7}$	0	Keep c_{6}		
$c_{4} . . c_{7}$	$c_{4} . . c_{6}$	1	Drop c_{7}		

- MUS: $\left\{c_{4}, c_{5}, c_{6}\right\}$

Many MUS algorithms

- Formula \mathcal{F} with m clauses k the size of largest minimal subset

Algorithm	Oracle Calls	Reference
Insertion-based	$\mathcal{O}(k m)$	[dSNP88, vMW08]
MCS_MUS	$\mathcal{O}(k m)$	[BK15]
Deletion-based	$\mathcal{O}(m)$	[CD91, BDTW93]
Linear insertion	$\mathcal{O}(m)$	[MSL11, BLM12]
Dichotomic	$\mathcal{O}(k \log (m))$	[HLSB06]
QuickXplain	$\mathcal{O}\left(k+k \log \left(\frac{m}{k}\right)\right)$	[Jun04]
Progression	$\mathcal{O}\left(k \log \left(1+\frac{m}{k}\right)\right)$	[MJB13]

- Note: Lower bound in FP ${ }_{\|}^{N P}$ and upper bound in FPNP
- Oracle calls correspond to testing unsatisfiability with SAT solver
- Practical optimizations: clause set trimming; clause set refinement; redundancy removal; (recursive) model rotation

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

Recap MaxSAT

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable

Recap MaxSAT

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

Recap MaxSAT

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes

Recap MaxSAT

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes
- Note: Clauses can have weights \& there can be hard clauses

Recap MaxSAT

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest cost MCSes
- Note: Clauses can have weights \& there can be hard clauses

Recap MaxSAT

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest cost MCSes
- Note: Clauses can have weights \& there can be hard clauses
- Many practical applications

MaxSAT problem(s)

MaxSAT problem(s)

		Hard Clauses?	
		No	Yes
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

MaxSAT problem(s)

- Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
- Without weights, cost of each falsified soft clause is 1
- Or, compute set of falsified soft clauses with minimum cost (s.t. hard \& remaining soft clauses are satisfied)

MaxSAT problem(s)

		Hard Clauses?	
		No	Yes
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

- Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
- Without weights, cost of each falsified soft clause is 1
- Or, compute set of falsified soft clauses with minimum cost (s.t. hard \& remaining soft clauses are satisfied)
- Note: goal is to compute set of satisfied (or falsified) clauses; not just the cost !

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)
- Cannot use unit propagation

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)
- Cannot use unit propagation
- Cannot learn clauses (using unit propagation)

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)
- Cannot use unit propagation
- Cannot learn clauses (using unit propagation)
- Need to solve MaxSAT using different techniques

Many MaxSAT approaches

Many MaxSAT approaches

- For practical (industrial) instances: core-guided \& iterative MHS approaches are the most effective

Core-guided solver performance - partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

Core-guided solver performance - weighted partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & &
\end{array}
$$

Relax all clauses; Set $U B=12+1$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 12 & & &
\end{array}
$$

Formula is SAT; E.g. all $x_{i}=0$ and $r_{1}=r_{7}=r_{9}=1$ (i.e. cost $=3$)

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 2 & & &
\end{array}
$$

Refine $U B=3$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
& & & \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 2 & & &
\end{array}
$$

Formula is SAT; E.g. $x_{1}=x_{2}=1 ; x_{3}=\ldots=x_{8}=0$ and $r_{4}=r_{9}=1$ (i.e. cost $=2$)

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

Refine $U B=2$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

Formula is UNSAT; terminate

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & &
\end{array}
$$

MaxSAT solution is last satisfied UB: $U B=2$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

MaxSAT solutio is last satisfied UB: $U B=2$

AtMostk/PB constraints over all relaxation variables

All (possibly many) soft clauses relaxed

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT

MSU3 core-guided algorithm

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

MSU3 core-guided algorithm

$$
\begin{array}{ll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5}
\end{array}
$$

Formula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{6} r_{i} \leq 1 & & &
\end{array}
$$

Add relaxation variables and AtMost $k, k=1$, constraint

MSU3 core-guided algorithm

Formula is (again) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Add new relaxation variables and update AtMost k, $\mathrm{k}=2$, constraint

MSU3 core-guided algorithm

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
& & & \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Instance is now SAT

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solu ion is $|\varphi|-\mathcal{I}=12-2=10$

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solu ion is $|\varphi|-\mathcal{I}=, 2-2=10$

AtMostk/PB
constraints used

Some clauses not relaxed

Relaxed soft clauses become hard

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Examples in PySAT

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2}
\end{array} c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2}
\end{array} c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} : \emptyset

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2}
\end{array} c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$?

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2}
\end{array} c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$

MHS approach for MaxSAT

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1} \\
c_{6}=x_{6} \vee \neg x_{8} \\
c_{9}=x_{7} \vee x_{5} \quad c_{7}=x_{2} \vee x_{4} \\
c_{10}=\neg x_{7} \vee x_{5} \\
c_{8}=\neg x_{4} \vee x_{5} \\
\mathcal{K}=\left\{\left\{c_{11}, c_{2}, c_{3}, c_{4}\right\},\left\{x_{5}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$?

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2}
\end{array} c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \\
& c_{7}=x_{2} \vee x_{4} \\
& c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes
- Terminate \& return 2

MaxSAT solving with SAT oracles - a sample

- A sample of recent algorithms:

Algorithm	\# Oracle Queries	Reference
Linear search SU	Exponential***	$[$ [BP10]
Binary search	Linear*	[FM06]
FM/WMSU1/WPM1	Exponential**	[FM06, MP08, MMSP09, ABL09, ABGL12]
WPM2	Exponential**	[ABL10a, ABLL13]
Bin-Core-Dis	Linear	[HMM11, MHM12]
Iterative MHS	Exponential	[DB11, DB13a, DB13b]

* $\mathcal{O}(\log m)$ queries with SAT oracle, for (partial) unweighted MaxSAT ** Weighted case; depends on computed cores
*** On \# bits of problem instance (due to weights)
- But also additional recent work:
- Progression
- Soft cardinality constraints (OLL)
- MaxSAT resolution

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Examples in PySAT

Example: naive (deletion) MUS extraction

Input : Set \mathcal{F}
Output: Minimal subset \mathcal{M} begin

```
M}\leftarrow\mathcal{F
```

foreach $c \in \mathcal{M}$ do
if $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then
$\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\} \quad / /$ If $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$, then $c \notin \operatorname{MUS}$
return \mathcal{M}
// Final \mathcal{M} is MUS
end

- Number of predicate tests: $\mathcal{O}(m)$

Naive MUS extraction I

```
def main():
        cnf = CNF(from_file=argv[1]) # create a CNF object from file
        (rnv, assumps) = add_assumps(cnf)
        oracle = Solver(name='g3', bootstrap_with=cnf.clauses)
        mus = find_mus(assumps, oracle)
        mus = [ref - rnv for ref in mus]
        print("MUS: ", mus)
if __name__= "__main__":
        main()
```


Naive MUS extraction II

```
def add_assumps(cnf):
    rnv = topv = cnf.nv
    assumps = [] # list of assumptions to use
    for i in range(len(cnf.clauses)):
        topv += 1
        assumps.append(topv) # register literal
        cnf.clauses[i].append(-topv) # extend clause with literal
    cnf.nv = cnf.nv + len(assumps) # update # of vars
    return rnv, assumps
def main():
    cnf = CNF(from_file=argv[1]) # create a CNF object from file
    (rnv, assumps) = add_assumps(cnf)
    oracle = Solver(name='g3', bootstrap_with=cnf.clauses)
    mus = find_mus(assumps, oracle)
    mus = [ref - rnv for ref in mus]
    print("MUS: ", mus)
if __name__=" __main__":
    main()
```


Naive MUS extraction III

```
from sys import argv
from pysat.formula import CNF
from pysat. solvers import Solver
def find_mus(assmp, oracle):
        \(\mathrm{i}=0\)
        while \(i<l e n(\) assmp):
            \(\mathrm{ts}=\operatorname{assmp}[: \mathrm{i}]+\operatorname{assmp}[(\mathrm{i}+1):]\)
            if not oracle.solve(assumptions=ts):
            assmp \(=\) ts
            else:
            i \(+=1\)
    return assmp
```


Naive MUS extraction III

```
from sys import argv
from pysat.formula import CNF
from pysat. solvers import Solver
def find_mus(assmp, oracle):
    \(\mathrm{i}=0\)
    while i < len(assmp):
        \(\mathrm{ts}=\operatorname{assmp}[: \mathrm{i}]+\operatorname{assmp}[(\mathrm{i}+1):]\)
        if not oracle. solve (assumptions=ts):
            assmp \(=\) ts
            else:
        i \(+=1\)
    return assmp
```


Demo

A less naive MUS extractor

```
def clset_refine(assmp, oracle):
    assmp = sorted(assmp)
    while True:
            oracle.solve( assumptions=assmp)
            ts = sorted(oracle.get_core())
            if ts == assmp:
                break
            assmp = ts
        return assmp
# ...
def main():
        cnf = CNF(from_file=argv[1]) # create a CNF object from file
        (rnv, assumps) = add_assumps(cnf)
        oracle = Solver(name='g3', bootstrap_with=cnf.clauses)
        assumps = clset_refine(assumps, oracle)
        mus = find_mus(assumps, oracle)
        mus = [ref - rnv for ref in mus]
        print("MUS: ", mus)
if __name__=" __main__":
        main()
```


Encoding sudoku

```
class SudokuEncoding(CNF, object):
    def _-init__(self):
        # initializing CNF's internal parameters
        super(SudokuEncoding, self).__init__()
        self.vpool = IDPool()
        # at least one value in each cell
        for i, j in itertools.product(range(9), range(9)):
            self.append([self.var(i, j, val) for val in range(9)])
    # at most one value in each row
    for i in range(9):
            for val in range(9):
            for j1, j2 in itertools.combinations(range(9), 2):
                        self.append([-self.var(i, j1, val), -self.var(i, j2, val)])
    # at most one value in each column
    for j in range(9):
            for val in range(9):
            for i1, i2 in itertools.combinations(range(9), 2):
                        self.append([-self.var(i1, j, val), -self.var(i2, j, val)])
    # at most one value in each square
    for val in range(9):
        for i in range(3):
            for j in range(3):
                subgrid = itertools.product(range( }3*\textrm{i},3*\textrm{i}+3),\quadrange(3*j, 3*j+3)
                for c in itertools.combinations(subgrid, 2):
                    self.append([-self.var(c[0][0],c[0][1],val),
                                    -self.var(c[1][0],c[1][1],val)])
    def var(self, i, j, v):
        return self.vpool.id(tuple([i + 1, j + 1, v + 1]))
    def cell(self, var):
    return self.vpool.obj(var)
```

A prototype sudoku game

A prototype sudoku game

			Sudok	uzze	h SA			
8			5	1	7	4		
		6	3			5		
				8		1	3	
			9			7		1
4	6		8		1	3		9
								8
9	8		1					
	3			7				
1			6		3		2	
Generate Puzzle								

A prototype sudoku game

				uzze	h SA			
8			5	1	7	4		
		6	3			5		
				8		1	3	
			9			7		1
4	6		8		1	3		9
								8
9	8		1					
	3			7				
1			6		3		2	
Generate Puzzle								

Demo

Part 4

Sample of Applications

Flagship applications

- Bounded (\& unbounded) model checking
- Automated planning
- Software model checking
- Package management
- Design debugging
- Haplotyping

CDCL SAT is the engines' engine

CDCL SAT is ubiquitous in problem solving

Recent applications

- Two-level logic minimization with SAT
- Reimplementation of Quine-McCluskey with SAT oracles

Recent applications

- Two-level logic minimization with SAT
- Reimplementation of Quine-McCluskey with SAT oracles
- Maximum cliques with SAT

Recent applications

- Two-level logic minimization with SAT
- Reimplementation of Quine-McCluskey with SAT oracles
- Maximum cliques with SAT
- Explainable decision sets
- Computation of smallest decision sets (rules)

Recent applications

- Two-level logic minimization with SAT
- Reimplementation of Quine-McCluskey with SAT oracles
- Maximum cliques with SAT
- Explainable decision sets
- Computation of smallest decision sets (rules)
- Smallest (explainable) decision trees
- Computation of smallest decision trees

Recent applications

- Two-level logic minimization with SAT
- Reimplementation of Quine-McCluskey with SAT oracles
- Maximum cliques with SAT
- Explainable decision sets
- Computation of smallest decision sets (rules)
- Smallest (explainable) decision trees
- Computation of smallest decision trees
- Abduction-based explanations for ML models
- On-demand extraction of explanations for any ML model

Smallest decision trees - encoding sizes in bytes

Model	Weather	Mouse	Cancer	Car	Income
CP'09*	27 K	3.5 M	92 G	842 M	354 G

Smallest decision trees - encoding sizes in bytes

Model	Weather	Mouse	Cancer	Car	Income
CP'09*	27 K	3.5 M	92 G	842 M	354 G
IJCAI'18	190 K	1.2 M	5.2 M	4.1 M	1.2 G

Abduction-based explanations

- Positive:
- General approach, applicable to any ML model represented as a set of constraints
- Ability to explain predictions of NNs
- Negative:
- NN sizes are fairly small, i.e. tens of neurons
- Best results with ILP-based approach
- SMT/SAT models currently ineffective
- But, algorithms inspired SAT-based solutions

Outline

Solving MaxClique with SAT

Modeling MaxClique with SAT

- Given (undirected) graph, find largest complete subgraph
- Main constraint:

Given $u, v \in V$:
If $(u, v) \notin E$, then one must not have both u and v in the maximum-size clique

Modeling MaxClique with SAT

- Given (undirected) graph, find largest complete subgraph
- Main constraint:

Given $u, v \in V$:
If $(u, v) \notin E$, then one must not have both u and v in the maximum-size clique

- Associate Boolean x_{u} with $u \in V$

Modeling MaxClique with SAT

- Given (undirected) graph, find largest complete subgraph
- Main constraint:

Given $u, v \in V$:
If $(u, v) \notin E$, then one must not have both u and v in the maximum-size clique

- Associate Boolean x_{u} with $u \in V$
- Main goal:

Assign 1 to largest set of variables that are consistent with constraint

- E.g. use MaxSAT

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\begin{aligned} \mathcal{H} & \triangleq\left\{\left(\neg x_{u} \vee \neg x_{v}\right) \mid(u, v) \in E^{C}\right\} \\ \mathcal{S} & \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\end{aligned}\right.$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\begin{array}{l}\mathcal{H} \triangleq\left\{\left(\neg x_{u} \vee \neg x_{v}\right) \mid(u, v) \in E^{C}\right\} \\ \mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid \vee \vee\right\}\end{array}\right.$
Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\begin{array}{l}\mathcal{H} \triangleq\left\{\left(\neg x_{u} \vee \neg x_{v}\right) \mid(u, v) \in E^{C}\right\}\end{array}\right.$
Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

$\mathcal{S}=\left\{\begin{array}{l}\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right) \\ \left(x_{4}\right)\left(x_{5}\right)\left(x_{6}\right) \\ \left(x_{7}\right)\end{array}\right\}$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

$$
\begin{aligned}
& \mathcal{H}=\left\{\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{6}\right)\left(\neg x_{1} \vee \neg x_{7}\right) \\
\left(\neg x_{2} \vee \neg x_{6}\right)\left(\neg x_{2} \vee \neg x_{7}\right) \\
\left(\neg x_{4} \vee \neg x_{6}\right)\left(\neg x_{4} \vee \neg x_{7}\right) \\
\left(\neg x_{6} \vee \neg x_{7}\right)
\end{array}\right\} \\
& \mathcal{S}=\left\{\begin{array}{l}
\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right) \\
\left(x_{4}\right)\left(x_{5}\right)\left(x_{6}\right) \\
\left(x_{7}\right)
\end{array}\right\}
\end{aligned}
$$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

$$
\begin{aligned}
& \mathcal{H}=\left\{\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{6}\right)\left(\neg x_{1} \vee \neg x_{7}\right) \\
\left(\neg x_{2} \vee \neg x_{6}\right)\left(\neg x_{2} \vee \neg x_{7}\right) \\
\left(\neg x_{4} \vee \neg x_{6}\right)\left(\neg x_{4} \vee \neg x_{7}\right) \\
\left(\neg x_{6} \vee \neg x_{7}\right)
\end{array}\right\} \\
& \mathcal{S}=\left\{\begin{array}{l}
\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right) \\
\left(x_{4}\right)\left(x_{5}\right)\left(x_{6}\right) \\
\left(x_{7}\right)
\end{array}\right\}
\end{aligned}
$$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\begin{array}{c}\mathcal{H} \triangleq\left\{\left(\neg x_{u} \vee \neg x_{v}\right) \mid(u, v) \in E^{C}\right\} \\ \mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid\right.\end{array}\right.$
Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

$$
\left.\begin{array}{l}
\mathcal{H}=\left\{\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{6}\right)\left(\neg x_{1} \vee \neg x_{7}\right) \\
\left(\neg x_{2} \vee \neg x_{6}\right)\left(\neg x_{2} \vee \neg x_{7}\right) \\
\left(\neg x_{4} \vee \neg x_{6}\right)\left(\neg x_{4} \vee \neg x_{7}\right)
\end{array}\right\} \\
\left(\neg x_{6} \vee \neg x_{7}\right)
\end{array}\right\}
$$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\begin{array}{c}\mathcal{H} \triangleq\left\{\left(\neg x_{u} \vee \neg x_{v}\right) \mid(u, v) \in E^{C}\right\} \\ \mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid\right.\end{array}\right.$
Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

$$
\left.\begin{array}{l}
\mathcal{H}=\left\{\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{6}\right)\left(\neg x_{1} \vee \neg x_{7}\right) \\
\left(\neg x_{2} \vee \neg x_{6}\right)\left(\neg x_{2} \vee \neg x_{7}\right) \\
\left(\neg x_{4} \vee \neg x_{6}\right)\left(\neg x_{4} \vee \neg x_{7}\right)
\end{array}\right\} \\
\left(\neg x_{6} \vee \neg x_{7}\right)
\end{array}\right\}
$$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\begin{array}{l}\mathcal{H} \triangleq\left\{\left(\neg x_{u} \vee \neg x_{v}\right) \mid(u, v) \in E^{C}\right\} \\ \left.\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid \vee\right)^{\prime}\right)\end{array}\right.$
Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{S} \triangleq\left\{\left(x_{u}\right) \mid v \in V\right\}\right.$

$$
\begin{aligned}
& \mathcal{H}=\left\{\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{6}\right)\left(\neg x_{1} \vee \neg x_{7}\right) \\
\left(\neg x_{2} \vee \neg x_{6}\right)\left(\neg x_{2} \vee \neg x_{7}\right) \\
\left(\neg x_{4} \vee \neg x_{6}\right)\left(\neg x_{4} \vee \neg x_{7}\right) \\
\left(\neg x_{6} \vee \neg x_{7}\right)
\end{array}\right\} \\
& \mathcal{S}=\left\{\begin{array}{l}
\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right) \\
\left(x_{4}\right)\left(x_{5}\right)\left(x_{6}\right) \\
\left(x_{7}\right)
\end{array}\right\}
\end{aligned}
$$

An example

Construct $\mathcal{F}=\langle\mathcal{H}, \mathcal{S}\rangle$ s.t. $\left\{\mathcal{H} \triangleq\left\{\left(\neg x_{\mathcal{U}} \vee \neg x_{V}\right) \mid(u, v) \in E^{C}\right\}\right.$

$$
\begin{aligned}
& \mathcal{H}=\left\{\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{6}\right)\left(\neg x_{1} \vee \neg x_{7}\right) \\
\left(\neg x_{2} \vee \neg x_{6}\right)\left(\neg x_{2} \vee \neg x_{7}\right) \\
\left(\neg x_{4} \vee \neg x_{6}\right)\left(\neg x_{4} \vee \neg x_{7}\right) \\
\left(\neg x_{6} \vee \neg x_{7}\right)
\end{array}\right\} \\
& \mathcal{S}=\left\{\begin{array}{l}
\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right) \\
\left(x_{4}\right)\left(x_{5}\right)\left(x_{6}\right) \\
\left(x_{7}\right)
\end{array}\right\}
\end{aligned}
$$

solve \mathcal{F} with MaxSAT!

But the size of E^{C} can be problematic...

Instance	$\|\mathbf{V}\|$	$\|\mathbf{E}\|$	$\|\mathbf{E}\|^{\text {c }}$
comm-n10000	10000	10000	49995000
ca-AstroPh	18772	396160	175807218
ca-citeseer	227322	814136	25836945367
ca-coauthors-dblp	540488	15245731	146048663585
ca-CondMat	23133	186936	267392475
ca-dblp-2010	226415	716462	25631272858
ca-dblp-2012	317082	1049868	50269606035
ca-HepPh	12008	237010	71865026
ca-HepTh	9877	51971	48730532
ca-MathSciNet	332689	820644	55340331061
ia-email-EU	32430	54397	525814268
ia-reality-call	6809	9484	23175161
ia-retweet-pol	18470	61157	170518528
ia-wiki-Talk	92117	360767	4242456136
rt-pol	18470	61157	170518528
rt_barackobama	9631	9826	46373070
soc-epinions	63947	606512	2044034866
soc-gplus	23628	39242	279113764
tech-as-caida2007	26477	53383	350475620
tech-internet-as	40164	85123	806508407
tech-pgp	10680	24340	57012200
tech-WHOIS	7476	56943	27892083
web-arabic-2005	163598	1747269	13380487332
web-baidu-baike-related	415641	3284387	86375643874
web-it-2004	509338	7178413	129705675378
web-NotreDame	325729	1497134	53048356451
web-sk-2005	121422	334419	7371377334

But the size of E^{C} can be problematic...

Instance	$\|\mathbf{V}\|$	$\|\mathbf{E}\|$	$\|\mathbf{E}\|^{\text {c }}$
comm-n10000	10000	10000	49995000
ca-AstroPh	18772	396160	175807218
ca-citeseer	227322	814136	25836945367
ca-coauthors-dblp	540488	15245731	146048663585
ca-CondMat	23133	186936	267392475
ca-dblp-2010	226415	716462	25631272858
ca-dblp-2012	317082	1049868	50269606035
ca-HepPh	12008	237010	71865026
ca-HepTh	9877	51971	48730532
ca-MathSciNet	332689	820644	55340331061
ia-email-EU	32430	54397	525814268
ia-reality-call	6809	9484	23175161
ia-retweet-pol	18470	61157	170518528
ia-wiki-Talk	92117	360767	4242456136
rt-pol	18470	61157	170518528
rt_barackobama	9631	9826	46373070
soc-epinions	63947	606512	2044034866
soc-gplus	23628	39242	279113764
tech-as-caida2007	26477	53383	350475620
tech-internet-as	40164	85123	806508407
tech-pgp	10680	24340	57012200
tech-WHOIS	7476	56943	27892083
web-arabic-2005	163598	1747269	13380487332
web-baidu-baike-related	415641	3284387	86375643874
web-it-2004	509338	7178413	129705675378
web-NotreDame	325729	1497134	53048356451
web-sk-2005	121422	334419	7371377334

$$
\left|E^{C}\right|=\frac{|E| \times(|E|-1)}{2}-|E|
$$

But the size of E^{C} can be problematic...

Instance	$\|\mathbf{V}\|$	$\|\mathbf{E}\|$	$\|\mathbf{E}\|^{\text {c }}$
comm-n10000	10000	10000	49995000
ca-AstroPh	18772	396160	175807218
ca-citeseer	227322	814136	25836945367
ca-coauthors-dblp	540488	15245731	146048663585
ca-CondMat	23133	186936	267392475
ca-dblp-2010	226415	716462	25631272858
ca-dblp-2012	317082	1049868	50269606035
ca-HepPh	12008	237010	71865026
ca-HepTh	9877	51971	48730532
ca-MathSciNet	332689	820644	55340331061
ia-email-EU	32430	54397	525814268
ia-reality-call	6809	9484	23175161
ia-retweet-pol	18470	61157	170518528
ia-wiki-Talk	92117	360767	4242456136
rt-pol	18470	61157	170518528
rt_barackobama	9631	9826	46373070
soc-epinions	63947	606512	2044034866
soc-gplus	23628	39242	279113764
tech-as-caida2007	26477	53383	350475620
tech-internet-as	40164	85123	806508407
tech-pgp	10680	24340	57012200
tech-WHOIS	7476	56943	27892083
web-arabic-2005	163598	1747269	13380487332
web-baidu-baike-related	415641	3284387	86375643874
web-it-2004	509338	7178413	129705675378
web-NotreDame	325729	1497134	53048356451
web-sk-2005	121422	334419	7371377334

$$
\left|E^{C}\right|=\frac{|E| \times(|E|-1)}{2}-|E|
$$

Unrealistic to model with SAT on sparse graphs

How to reduce the encoding size?

- Main hurdle:

SAT-based approaches based on $G^{C}=\left(V, E^{C}\right)$
will not scale...
And $G=(V, E)$ is much smaller than $G^{C}=\left(V, E^{C}\right)$

How to reduce the encoding size?

- Main hurdle:

SAT-based approaches based on $G^{C}=\left(V, E^{C}\right)$
will not scale...
And $G=(V, E)$ is much smaller than $G^{C}=\left(V, E^{C}\right)$

- Can we model MaxClique using solely G?

Another take at solving MaxClique with SAT

- Revisit the original decision problem:

Given $G=(V, E)$, is there a clique of size K ?

Another take at solving MaxClique with SAT

- Revisit the original decision problem:

Given $G=(V, E)$, is there a clique of size K ?

- First, one must pick exactly K vertices:

$$
\sum_{u \in V} x_{u}=K
$$

Another take at solving MaxClique with SAT

- Revisit the original decision problem:

Given $G=(V, E)$, is there a clique of size K ?

- First, one must pick exactly K vertices:

$$
\sum_{u \in V} x_{u}=K
$$

- And second, if a vertex $u \in V$ is picked (i.e. $x_{u}=1$), then $K-1$ of its neighbours must also be picked!

$$
x_{u} \rightarrow\left(\sum_{v \in \operatorname{Adj}(u)} x_{v}=K-1\right)
$$

Part 5

A Glimpse of the Future

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting
- Arms race for proof systems stronger than resolution/clause learning
- Cutting Planes (CP)
- Extended Resolution (and equivalent)

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting
- Arms race for proof systems stronger than resolution/clause learning
- Cutting Planes (CP)
- Extended Resolution (and equivalent)
- Verification of ML models with SAT/SMT

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting
- Arms race for proof systems stronger than resolution/clause learning
- Cutting Planes (CP)
- Extended Resolution (and equivalent)
- Verification of ML models with SAT/SMT
- Scalable explainable AI/ML
- Deep NNs operate as black-boxes
- Often important to provide small/intuitive explanations for predictions made
- ...

Some final notes

- SAT is a low-level, but very powerful problem solving paradigm
- PySAT suggests a way to tackle this drawback, but there are others
- There is an ongoing revolution on problem solving with SAT oracles
- The use of SAT oracles is impacting problem solving for many different complexity classes
- With well-known representative problems, e.g. QBF, \#SAT, etc.

Some final notes

- SAT is a low-level, but very powerful problem solving paradigm
- PySAT suggests a way to tackle this drawback, but there are others
- There is an ongoing revolution on problem solving with SAT oracles
- The use of SAT oracles is impacting problem solving for many different complexity classes
- With well-known representative problems, e.g. QBF, \#SAT, etc.
- Many fascinating research topics out there!
- Connections with ML seem unavoidable

Sample of tools

- PySAT
- SAT solvers:
- MiniSat
- Glucose
- MaxSAT solvers:
- RC2
- MSCG
- OpenWBO
- MaxHS
- MUS extractors:
- MUSer
- MCS extractors:
- mcsXL
- LBX
- MCSIs
- Many other tools available from the ReasonLab server

Questions?

References I

[ABGL12] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based weighted MaxSAT solvers.
In CP, pages 86-101, 2012.
[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT through satisfiability testing. In SAT, pages 427-440, 2009.
[ABL10a] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
A new algorithm for weighted partial MaxSAT.
In AAAI, 2010.
[ABL ${ }^{+}$10b] Josep Argelich, Daniel Le Berre, Inês Lynce, Joao Marques-Silva, and Pascal Rapicault.
Solving linux upgradeability problems using boolean optimization.
In LoCoCo, volume 29 of EPTCS, pages 11-22, 2010.
[ABL13] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artif. Intell., 196:77-105, 2013.

References II

[AL08] Josep Argelich and Inês Lynce.
CNF instances from the software package installation problem.
In RCRA, volume 451 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.
[ALS09] Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving boolean multilevel optimization problems.
In IJCAI, pages 393-398, 2009.
[AMM15] M. Fareed Arif, Carlos Mencía, and Joao Marques-Silva. Efficient MUS enumeration of horn formulae with applications to axiom pinpointing.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 324-342. Springer, 2015.
[ANO^{+}12] Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Valentin Mayer-Eichberger.
A new look at BDDs for pseudo-boolean constraints.
J. Artif. Intell. Res., 45:443-480, 2012.

References III

[ANOR09] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell.
Cardinality networks and their applications.
In SAT, pages 167-180, 2009.
[ANOR11] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell.
Cardinality networks: a theoretical and empirical study.
Constraints, 16(2):195-221, 2011.
[AS09] Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399-404, 2009.
[Bat68] Kenneth E. Batcher.
Sorting networks and their applications.
In AFIPS Spring Joint Computing Conference, volume 32 of AFIPS Conference Proceedings, pages 307-314. Thomson Book Company, Washington D.C., 1968.

References IV

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of pseudo-boolean constraints into CNF. In SAT, pages 181-194, 2009.
[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing and solving over-determined constraint satisfaction problems.

In IJCAI, pages 276-281, 1993.
[BF15] Armin Biere and Andreas Fröhlich.
Evaluating CDCL restart schemes.
In Sixth Pragmatics of SAT workshop, 2015.
[Bie08] Armin Biere.
PicoSAT essentials.
JSAT, 4(2-4):75-97, 2008.

References V

[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages 70-86. Springer, 2015.
[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal.
Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res., 22:319-351, 2004.
[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97-116, 2012.
[BMS00] Luís Baptista and Joao Marques-Silva.
Using randomization and learning to solve hard real-world instances of satisfiability.
In CP, volume 1894 of Lecture Notes in Computer Science, pages 489-494. Springer, 2000.

References VI

[BP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
JSAT, 7(2-3):59-6, 2010.
[BS05] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization.
In PADL, pages 174-186, 2005.
[CD91] John W. Chinneck and Erik W. Dravnieks. Locating minimal infeasible constraint sets in linear programs. INFORMS Journal on Computing, 3(2):157-168, 1991.
[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In STOC, pages 151-158. ACM, 1971.
[CT95] Zhi-Zhong Chen and Seinosuke Toda.
The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231-239, 1995.

References VII

[CZ10] Michael Codish and Moshe Zazon-Ivry.
Pairwise cardinality networks.
In LPAR (Dakar), volume 6355 of Lecture Notes in Computer Science, pages 154-172. Springer, 2010.
[DB11] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In CP, pages 225-239, 2011.
[DB13a] Jessica Davies and Fahiem Bacchus.
Exploiting the power of MIP solvers in MAXSAT.
In SAT, pages 166-181, 2013.
[DB13b] Jessica Davies and Fahiem Bacchus.
Postponing optimization to speed up MAXSAT solving.
In CP, pages 247-262, 2013.
[dK89] Johan de Kleer.
A comparison of ATMS and CSP techniques.
In IJCAI, pages 290-296. Morgan Kaufmann, 1989.

References VIII

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-proving. Commun. ACM, 5(7):394-397, 1962.
[DP60] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory. J. ACM, 7(3):201-215, 1960.
[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget. Explanation-based generalisation of failures. In ECAI, pages 339-344, 1988.
[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, pages 502-518, 2003.
[ES06] Niklas Eén and Niklas Sörensson.
Translating pseudo-boolean constraints into SAT. JSAT, 2(1-4):1-26, 2006.

References IX

[FM06] Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In SAT, volume 4121 of Lecture Notes in Computer Science, pages 252-265. Springer, 2006.
[FP01] Alan M. Frisch and Timothy J. Peugniez.
Solving non-boolean satisfiability problems with stochastic local search.
In IJCAI, pages 282-290. Morgan Kaufmann, 2001.
[FS02] Torsten Fahle and Meinolf Sellmann.
Cost based filtering for the constrained knapsack problem. Annals OR, 115(1-4):73-93, 2002.
[Gav07] Marco Gavanelli.
The log-support encoding of CSP into SAT.
In CP, volume 4741 of Lecture Notes in Computer Science, pages
815-822. Springer, 2007.

References X

[Gel09] Allen Van Gelder.
Improved conflict-clause minimization leads to improved propositional proof traces.
In SAT, pages 141-146, 2009.
[Gen02] Ian P. Gent.
Arc consistency in SAT.
In ECAI, pages 121-125. IOS Press, 2002.
[GF93] Georg Gottlob and Christian G. Fermüller. Removing redundancy from a clause.
Artif. Intell., 61(2):263-289, 1993.
[GJ96] Richard Génisson and Philippe Jégou.
Davis and putnam were already checking forward.
In ECAI, pages 180-184, 1996.
[GN02] Evguenii I. Goldberg and Yakov Novikov. BerkMin: A fast and robust SAT-solver.
In DATE, pages 142-149. IEEE Computer Society, 2002.

References XI

[GSC97] Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in combinatorial search.
In CP, volume 1330 of Lecture Notes in Computer Science, pages 121-135. Springer, 1997.
[HJL^{+}15] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere.
Clause elimination for SAT and QSAT.
J. Artif. Intell. Res., 53:127-168, 2015.
[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric Boussemart. Extracting MUCs from constraint networks.
In ECAI, pages 113-117, 2006.
[HMM11] Federico Heras, António Morgado, and Joao Marques-Silva. Core-guided binary search algorithms for maximum satisfiability. In AAAI. AAAI Press, 2011.

References XII

[Hua07] Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In IJCAI, pages 2318-2323, 2007.
[IMM17] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. Cardinality encodings for graph optimization problems.
In IJCAI, pages 652-658, 2017.
[IMM18] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. PySAT: A python toolkit for prototyping with SAT oracles.
In SAT, volume 10929 of Lecture Notes in Computer Science, pages 428-437. Springer, 2018.
[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for machine learning models. In AAAI, 2019.
[IPM15] Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva. SAT-based formula simplification.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 287-298. Springer, 2015.

References XIII

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 627-645. Springer, 2018.
[JHB12] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules.
In IJCAR, volume 7364 of Lecture Notes in Computer Science, pages 355-370. Springer, 2012.
[Jun04] Ulrich Junker.
QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems.
In AAAI, pages 167-172, 2004.
[Kas90] Simon Kasif.
On the parallel complexity of discrete relaxation in constraint satisfaction networks.
Artif. Intell., 45(3):275-286, 1990.

References XIV

[LGPC16a] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential recency weighted average branching heuristic for SAT solvers.
In AAAI, pages 3434-3440, 2016.
[LGPC16b] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Learning rate based branching heuristic for SAT solvers.
In SAT, pages 123-140, 2016.
[LLX $\left.{ }^{+} 17\right]$ Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause minimization approach for CDCL SAT solvers. In IJCAI, pages 703-711, 2017.
$\left[\mathrm{LOM}^{+} 18\right]$ Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh.
Machine learning-based restart policy for CDCL SAT solvers.
In SAT, pages 94-110, 2018.

References XV

[MBC^{+}06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen.
Managing the complexity of large free and open source package-based software distributions.
In ASE, pages 199-208, 2006.
[MHM12] António Morgado, Federico Heras, and João Marques-Silva. Improvements to core-guided binary search for MaxSAT.
In SAT, volume 7317 of Lecture Notes in Computer Science, pages 284-297. Springer, 2012.
[MJB13] Joao Marques-Silva, Mikolás Janota, and Anton Belov.
Minimal sets over monotone predicates in boolean formulae.
In CAV, volume 8044 of Lecture Notes in Computer Science, pages 592-607. Springer, 2013.
[MJIM15] Joao Marques-Silva, Mikolás Janota, Alexey Ignatiev, and António Morgado.
Efficient model based diagnosis with maximum satisfiability.
In IJCAI, pages 1966-1972. AAAI Press, 2015.

References XVI

[MMSP09] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for weighted boolean optimization.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 495-508. Springer, 2009.
$\left[\mathrm{MMZ}^{+} 01\right]$ Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In DAC, pages 530-535. ACM, 2001.
[MP08] Joao Marques-Silva and Jordi Planes.
Algorithms for maximum satisfiability using unsatisfiable cores.
In DATE, pages 408-413. ACM, 2008.
[MS95] J. Marques-Silva.
Search Algorithms for Satisfiability Problems in Combinational Switching
Circuits.
PhD thesis, University of Michigan, May 1995.

References XVII

[MSL11] Joao Marques-Silva and Inês Lynce.
On improving MUS extraction algorithms.
In SAT, volume 6695 of Lecture Notes in Computer Science, pages
159-173. Springer, 2011.
[MSS93] Joao Marques-Silva and Karem A. Sakallah.
Space pruning heuristics for path sensitization in test pattern generation.
Technical Report CSE-TR-178-93, University of Michigan, 1993.
[MSS94] Joao Marques-Silva and Karem A. Sakallah.
Dynamic search-space pruning techniques in path sensitization.
In DAC, pages 705-711. ACM Press, 1994.
[MSS96a] Joao Marques-Silva and Karem A. Sakallah.
Conflict analysis in search algorithms for propositional satisfiability. Technical Report RT-04-96, INESC, May 1996.

References XVIII

[MSS96b] Joao Marques-Silva and Karem A. Sakallah. GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220-227, 1996.
[MSS99] Joao Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Computers, 48(5):506-521, 1999.
[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362-1368, 2018.
[PD07] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satisfiability solvers. In SAT, volume 4501 of Lecture Notes in Computer Science, pages 294-299. Springer, 2007.

References XIX

[PD09] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning SAT solvers with restarts.
In CP, volume 5732 of Lecture Notes in Computer Science, pages 654-668. Springer, 2009.
[PD11] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning SAT solvers as resolution engines. Artif. Intell., 175(2):512-525, 2011.
[PG86] David A. Plaisted and Steven Greenbaum.
A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293-304, 1986.
[Pre07] Steven David Prestwich.
Variable dependency in local search: Prevention is better than cure.
In SAT, pages 107-120, 2007.
[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57-95, 1987.

References XX

[Rob65] John Alan Robinson.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23-41, 1965.
[SB09] Niklas Sörensson and Armin Biere.
Minimizing learned clauses.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 237-243. Springer, 2009.
[Sel03] Meinolf Sellmann.
Approximated consistency for knapsack constraints.
In CP, pages 679-693, 2003.
[Sin05] Carsten Sinz.
Towards an optimal CNF encoding of boolean cardinality constraints.
In CP, pages 827-831, 2005.

References XXI

[SMV ${ }^{+}$07] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H. Liffiton, and Karem A. Sakallah.
Improved design debugging using maximum satisfiability.
In FMCAD, pages 13-19. IEEE Computer Society, 2007.
[SP04] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non increasing variable elimination resolution for preprocessing SAT instances.
In SAT, 2004.
[SSS12] Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. Learning back-clauses in SAT.
In SAT, pages 498-499, 2012.
[Stu13] Peter J. Stuckey. There are no CNF problems.
In SAT, pages 19-21, 2013.

References XXII

[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.
In CAV, pages 68-94, 2017.
[Tri03] Michael A. Trick.
A dynamic programming approach for consistency and propagation for knapsack constraints.
Annals OR, 118(1-4):73-84, 2003.
[Tse68] G.S. Tseitin.
On the complexity of derivations in the propositional calculus.
In H.A.O. Slesenko, editor, Structures in Constructives Mathematics and Mathematical Logic, Part II, pages 115-125, 1968.
[TSJL07] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. OPIUM: optimal package install/uninstall manager.
In ICSE, pages 178-188, 2007.

References XXIII

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara.
Compiling finite linear CSP into SAT.
Constraints, 14(2):254-272, 2009.
[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291-304, 2008.
[Wal00] Toby Walsh. SAT v CSP.
In CP, volume 1894 of Lecture Notes in Computer Science, pages 441-456. Springer, 2000.
[War98] Joost P. Warners.
A linear-time transformation of linear inequalities into conjunctive normal form.
Inf. Process. Lett., 68(2):63-69, 1998.

References XXIV

[ZM03] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications.
In DATE, pages 10880-10885. IEEE Computer Society, 2003.
[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver.
In ICCAD, pages 279-285. IEEE Computer Society, 2001.
[ZS00] Hantao Zhang and Mark E. Stickel. Implementing the Davis-Putnam method. J. Autom. Reasoning, 24(1/2):277-296, 2000.

