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Content

1. Semantics (45 mn)
2. Abstraction (45 mn)
break (30mn)
3. Verification and proofs (45 mn)

4. Analysis (45 mn)
= Numerical abstraction: see the VMCAI invited talk by Sylvie Putot (Ecole
polytechnique, France) on “Zonotopic abstract domains for numerical program
analysis”
» Symbolic abstraction: dependency analysis
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Semantics
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Syntax
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Context-free syntax of expressions

XY, ... € V variables (¥ not empty)
A e A == 1] x| A-A arithmetic expressions
B € B A, <A, | B, nandB, boolean expressions
E € E ::= A|B expressions
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Context-free syntax of program statements

S = statement S € $
X =A; assignment
I skip
| 4df (B) S conditional
| 4f (B) SelseS
|  while (B) S iteration
| break ; iteration break
|  {si3} compound statement
ST ::= SL S| € statement list
P ::= Sl program P € P
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Program labels

= To designate program points of program components, not part of the language
= Labels are unique

= at[s] label at entry of statement S

= after[s] label after exit of statement S

= escape[S] is it possible to break out of the statement S?

= break-to[[S] where to break (exit label of enclosing loop)

= in[s] labels in statement S (excluding after[S] and break-to[S])

= labs[s] £ in[[s] U {after[S]}

= labx[s] = labs[S] U (escape[S] ? {break-to[S]} ¢ &)
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Axiomatic definition of program labelling

= We never define labels, just the properties they must satisfy

= Example s=4if (B) S, else Sy

in[s] = at[s] uin[s,] Uin[s/]
at[s] ¢ in[s,] uin[s]
in[sf nin[s;] =@

after[s,] = after[s/] = after[s]]
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Prefix trace semantics
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Prefix trace

= A prefix trace is a finite observation of the program execution from entry

= A trace is a finite sequence of labels separated by actions (no memory state)

= |abels ¢: next action to be executed
= actions a;: records the computation done by a program step
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Example of prefix trace

= default initialization to 0

6 x=x+1; (44)
whilet (tt) {
G x=x+1;
if & (x> 2) & break ;}¢;¢

x=x+1=1 t X=x+1=2 (x> 2) t
o ¢ ¢, ) € ¢, € (61)
= = = = (x> 2 = =
— x=x+1=1 ¢, t ¢ XxX=x+1=2 ¢, ( ) ¢ t ¢ Xx=x+1=3
X >2 break skip
e4 eS E6 7
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Values of variables

= Go back in the past to look for the last recorded assigned value (or 0 at
initialization)

pimt X2EZY gy 2y (6.2)
p(rt ——t)x = p(nt) otherwise
p)x = 0
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Prefix trace semantics

= Given a trace 7, arriving at[s],
the prefix trace semantics 8*[S] of S specifies

the trace 7, of the execution of S from at[S] with initial values defined by 7,

T, T
. at[s] ———

€ 8*[s](myat[s])
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Structural rule-based defini-
tion of the prefix trace semantics
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Structural prefix trace semantics at a statement

Prefix trace at a statement S

(6.7)

at[[s] € 8 *[s] (,at[s])

A prefix continuation of the traces 7m;at[S] arriving at a program, statement or
statement list S can be reduced to the program point at[S] at this program,
statement or statement list S.
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Semantics of arithmetic expressions

= An environment p € Ev where Ev =2 V — Z is a function p mapping a variable x to
its value p(x) in the set Z of all mathematical integers.

= Semantics of arithmetic expressions:

d1]p 2 1 (3.4)
Ao = p(x)
da -alp = da]p-d[alp
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Structural prefix trace semantics of an assignment statement

Prefix traces of an assignment statement S ::=¢ x = A ;
v=oA[A]p(rt)

¢ X=A=U after[[s] € ;9‘*[[5]](710

A prefix finite trace of an assignment ¢ x = E ; continuing some trace 7t is ¢ followed
by the event x = v where v is the last value of x previously assigned to x on 7t
(otherwise initialized to 0) and finishing at the label after[S] after the assignment.
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Structural prefix trace semantics of a conditional statement

Prefix traces of a conditional statement S ::=1ift (B) S,

RB[B]p(m,¢) = ff

= (6.14)
t — after[[s] € 8 *[s](,¢)
Blelp(mt) =tt, 7, € 8*[s,](m,t = at[s,])

] B I (6.15)
¢ — at[s,] ~ 7, € 8 *[s](m;0)

~ is trace concatenation
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Structural prefix trace semantics of an empty statement list

Prefix traces of an empty statement list S1 ::= €

. _ (6.11)
at[s1] € 8§ *[s1](mat[s1])

= A prefix/maximal trace 7 of the empty statement list € continuing some trace is
reduced to the program label at[S1] at that empty statement.
= This case is redundant and already covered by (6.7).
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Structural prefix trace semantics of a statement list

Prefix traces of a statement list S1 ::=SU' S

. mE€ S*[sU](x,) (6.9)
m, € 8 *[s1(n)) '

. me 8*[sV](my), 75 € 8*[s](m, - 7,) (6.10)
Ty = T3 Eg*[[s-t]](ﬂﬂ |

A prefix trace of SU' S continuing an initial trace 7; can be a prefix trace of SU or a
finite maximal trace of S’ followed by a prefix trace of S.
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Structural prefix trace semantics of an iteration statement

Prefix traces of an iteration statement S ::= whilet (B) S,

. _ (6.20)
te 8 [s](mt)

_ et € 8*[s](m0), B[B]p(m tmyt) = ff (6.21)

e, ¢ IO after[s] € 8 *[s](r,¢)

eyt € 8*[s](m,0),  B[B]p(r,tn,t) = tt,

. T3 € §*[[Sb]](7r1€7r28 L, at[s,]) (6.22)
e, B, at[s,] ~ 75 € S* [s](m,0)

This is a forward, left recursive definition where »n + 1 iterations are n iterations
followed by one more iteration.
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Structural prefix trace semantics of an iteration statement

Prefix traces of an iteration statement S ::= while ¢ (B) S,

. _ (6.20)
te 8*[s](m,0)

 mte[ 8 IslmY |, Blelptmtmt) = f (6.21)

e, —®, after[s] €| 8 *[s](,¢)

tryt €| 8 [s)(m )|,  B[B]p(mtm,?) = t,

] 75 € 8 *[[8,] (ry 71,8 2 at[s,]) (6.22)

oyt 2 at[s,] - 7, €| 8 *[s](m,0)

The definition is structural (depends on the already defined semantics of
sub-components) and recursive (depends on itself) — might not be well-defined.
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Structural prefix trace semantics of a break statement

Prefix traces of a break statement S ::= ¢ break ;

- break (6'25)

t 2225, break-to[[S] € & *[s](r?)

A prefix finite trace of a break ¢ break ; continuing some initial trace 7t is the trace
¢ followed by the break ; event and ending at the break label break-to[S] (which is
the exit label of the closest enclosing iteration loop or else the program exit).
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Structural fixpoint definition
of the prefix trace semantics
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Examples of fixpoints x such that f(x) = x

fx) gfp f
f(x1)=aiz |fp f
flxo) = x0
= m
L., f f

increasing function f non-increasing function f
= As shown by Alfred Tarski, an increasing function on a complete lattice has at least

one fixpoint and has a least one.
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Tarski fixpoint theorem

Theorem (13.5, Tarski fixpoint theorem) An increasing function f € L—>L on
a complete lattice (L, C, L, T, 1, U) has a least fixpoint Ifp" f =[{x € L | f(x) C x}.
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Tarski iterative fixpoint theorem

Theorem (13.14, Tarski iterative fixpoint)

= Let f € P—5P be an increasing function on a poset (P, C, L) with infimum L.

» Define the iterates of f to be the sequence f° = 1 and ™' = f(f") forn e N.

= Assume that the least upper bound | [{f" | n € N} exists and f( |{f" | n €
ND =LH{f(f™") IneN}

= Then f has a least fixpoint Ifp" f = | [{f" | n € N}.

| Q.

PG povipaprs) 1Y
e LAt

f? f?

f 5
Ry T foo
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Fixpoint prefix trace semantics of an assignment statement

Fixpoint prefix trace semantics of an assignment statement S ::=¢ x = E ;

S*[s](nt) = {thufe 2X2E=Y, after[s] | v = €[E]p(n)}

= Example of basic case
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Fixpoint prefix trace semantics of a statement list

Prefix traces of a statement list S1 ::= S S

S*[s(r,) = S*[sV](x,) U (15.2)
{11y~ 15 | 71y € SF[SU](m,) A7t € 8 *[S](my = 71,)}

= S*[sl] contains the finite maximal traces of 8 *[sU]

= Example of inductive case (8 *[s1] defined in terms of 8 *[s1'] and & *[s] with
S < sl and S < S1 where < is the strict component relation)
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Fixpoint prefix trace semantics of an iteration

Prefix traces of an iteration statement S ::= whilet (B) S,
IfpS F*[whilet (B) S,] (15.3)

S*[whilet (B) S,
F*whilet (B) S,[(X)(m,¢) %) when ¢ #¢
(a)

{t}

>

I3

F*[whilet (B) s,](X)(m,¢)

li li _|(B) li i li
U {e'm,t — after[s] | ¢m, € X(m,¥) A
BB]p(m tmyt) = AL =t} (b)
U {e'm,v LN at[s,] = 75 | t'm,t € X(m,t) A BB p(m,t'm,t) = tt
(c)

N1ty € 8*[Sy](m t'm, B, at[s,)) A¥ = ¢}
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= Example of inductive fixpoint case
= inductive: 8*[whilet (B) S,] defined in terms of §*[s,] with
s, <whilet (B) S,
= fixpoint: §*[whilet (B) S,] recursively defined in terms of itself (n + 1
iterations are 1 iteration plus n iterations)
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Maximal trace semantics
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Maximal trace semantics, informally

= The maximal trace semantics $*[s] = $[s] U 8®°[s] is derived from the prefix
trace semantics 8§ *[s] by

= keeping the longest finite traces $*[s], and
= passing to the limit $°°[S] of prefix-closed traces for infinite traces.
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Finite maximal trace semantics

I3

{r,t € 8*[s](m,at[s]) | ¢ = after[s]}
16

= §T[s](mat[s])

. S*[s](m,®) when ¢ # at[[s]

s 87*[s](rr,at[S]) is the set of maximal finite traces at[S]m,after[S] of S continuing
the trace 7, at[S] and reaching after[s].
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Prefixes of a trace

€, €;
= If 1=t —— ...t — ...¢, is a finite trace then its prefix m[0..p] at pis
= 7 when p2=n

€ €
n ) —

j
o —— 4 when0< p<n.

€, €;
= If 7=t —— ...t — ... is an infinite trace then its prefix m[0..p] at p is
e ¢
6 —s .G —s .8

- tp.
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Limit of prefix traces

= The limit lim 7" of a set of traces 7T is the set of infinite traces which prefixes can
be extended to a trace in 7.

Iim7 =2 {meT®|VneN.3Ip2n.n[0.p]eT}.

» Let S be an iteration. (m, ') € lim 8§ *[S] where 7’ is infinite if and only if,
whenever we take a prefix n'[0..n] of 7/, it is a possible finite observation of the
execution of S and so belongs to the prefix trace semantics (7, 7'[0..n]) € $*[s].
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Infinite maximal trace semantics

8®[s] = lm(8*[s])
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Memory abstraction
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Memory abstraction

= Abstraction from traces 7 € T* to environments p € Ev 2 ¥V — V mapping variables
x € V to their value p(x) € V

v o) = p(m)
where
pimt ZZEZY oy 2y (6.2)
p(mt ——= t)x = p(nt) otherwise
p)x = 0
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Properties
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Formal property
= A property is the set of elements that satisfy this property.

= Examples:
» {2k + 1|k € N} is the property “to be an odd natural
» {2k | k € Z} is the property “to be an even integer”

= Formally:

= € is a set of entities

= A property of these entities is an element of p(€)

= Examples:
» O is false (ff)
» G is true (it)
» ec P, Pecp(€) means “e has property P"
= P C P'isimplication = (P is stronger that P', P' is weaker that P)
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Program property

= Syntactic point of view: a program property is the set of all programs which have
this property (e.g. Rice theorem)

= Semantic point of view: : a program property is the set of all semantic of programs
which have this property.

= By [program] property, we mean the semantic point of view.

= A program semantics is a set of traces (in @(T")) so a program property is a set of
sets of traces (in p(p(T)))!

Lsometimes called “hyperproperties”
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The complete (boolean) lattice of formal properties

<p(®)a <, Q) (g) U, N, _‘>
©(C€) properties of entities belonging to €

= C implication
& false
¢ true

= U disjonction, or

= N conjunction, and
= - negation, =P £ G\ P

(the definition of “complete lattice” is forthcoming)
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Posets and complete lattices

= A poset (P, C) is a set equipped with a binary relation C which is (forall
x, 9,z € P)
= reflexive: x E x
» antisymmetric.: XE yAyCx=x=y
= transitive: xC yAyCz=>xCz

= A subset S € p(P) has a least upper bound (denoted US) if and only if

= |UISeP
= VxeS.xCUS
m VxeS.xCu=>USCu

= A complete lattice is a poset (P, C) in which any subset S € @(P) has a lub/join
uS (not only the finite ones).
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Collecting semantics
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Collecting semantics
= The strongest semantic property of program P

STl = (S°[PI)- (8.5)

= Program P has property P € p(p(T™*)) is
= 8§*[P] € P, or equivalently
» {S*[P]} € P ie. Pisimplied by the collecting semantics of program P.

= So we can use implication € (=) instead of € (with no direct equivalent for
predicates in logic).

= Program verification {8 *[P]} < P is undecidable (Rice theorem)
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Bibliography on semantics
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The End of Part 1
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Abstraction
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Abstraction

= We formalize the abstraction and approximation of program properties

= We show how a structural rule-based/fixpoint abstract semantics can be derived
from the collecting semantics by calculational design.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —52/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Informal introduction to abstraction
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)

= Consider a subset 4 € p(€) of properties of interest (A4, C)
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)
= Encode these properties of interest in an abstract domain (A, C)
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Abstraction, informally

Let be (p(C€), ) be properties of entities (so called the concrete domain)

Consider a subset 4 € p(€) of properties of interest (A4, C)

Encode these properties of interest in an abstract domain (A, C)

The decoding function y € A — 4 is called the concretization function
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

= So any concrete property must be over-approximated by a abstract property in
A =y(A)
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

= So any concrete property must be over-approximated by a abstract property in
A =y(A)

= |f the abstract proof succeeds, it is valid in the concrete (soundness)
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Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)

= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

= So any concrete property must be over-approximated by a abstract property in
A =y(A)

= |f the abstract proof succeeds, it is valid in the concrete (soundness)

= |f the abstract proof fails, you missed some property in @(€) \ 4 which is essential
in the concrete proof (incompleteness)
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Brahmagupta

Brahmagupta (born c. 598, died after 665) was an Indian mathematician and
astronomer;

Invented the rule of signs (including to compute with zero);

We explain his rule of sign as an abstract interpretation;

Probably the very first example of abstract interpretation.
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Structural collecting semantics

= Semantics

d[p] e (Vo2Z)>Z
dfi]p 21
dx]p = p(x)

dla -np = da]p-dA[A]p

»  Collecting semantics
SC[A] € p((V - Z) - Z)
S ={Ape -1}
Sx|={Ape(V - Z) - p(x)}
S[Aa -A]=Ape(V=>2Z)- fip) - £i(p) | fi € ST[ADN L, € ST[A L}
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Sign abstraction
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Sign property (of an individual variable)

Z
{z|z<0}4z¢o}\{z|z>0}
ee XX
{z|z<0}\{0}/{z|z>0}
%)
Example of Hasse diagram.
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Encoding of sign properties (of an individual variable)

/I\

\I/

Concretization function:

pe(ls) = O 1:(<0) = {z]z<0}
y:(<0) = {z|z<0} y:(#0) = {z|z#+0}
y:(=0) = {0} 1.(20) £ {z|zz>0}
y:(>0) = {z|z>0} y:(T.) = Z
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Encoding of sign properties (of an individual variable)
C is the partial order in P*

/I\

\X X\

\I/

Abstraction function:

¢ “Abstract Interpretation, Semantics, Verification, and Analysis”

o, (P)

a

| | is the least upper bound in P*

e.g. | [{<0,#0}

=T, [ |g=1.

[1is the greatest lower bound in P*
eg. [ {<0,#0} =<0, [|F =T

N
Q
F

o

N
—_
N
N
N
(=}
==

)
N
S

o

N
—_—
2
o)
I
(e}

{z]z<0} %<0
{z|z+0} 7% +0
{zlz=20}7%2=20

a-Bia clls cBls v Bl v Il Il v
N
N
I
Vv
2
=)
VvV
o

00 /e e e e e e

el
=N N N

—60/228 —
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Galois connection

= The pair (., y.) of functions satisfies a.(P) C Q & P < y.(Q)

a.(P)EQ
S a.(P)C #0 {in case Q = #0, other cases are similar§
& a.(P) € {1, <0,#0,>0} (def. §
©Pc@VPC{z|z<0vVPc{z|z>0VvPcC{z]|z+0} {def. a.§
o Pciz|z+0} (def. c§
& P € y.(#0) (def. y.§
© Pcy.(Q) {case Q = #0§

= This is the definition of a Galois connection

= We write (0(Z), <) =— (P*, ©)
= This will be further generalized.
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Sign abstract semantics

S[A] € (V- P*) - P*
S[i]Pp = >0
S[x]P £ P(x)
S[A - AJP = S[A P - S[A,] P}
Xy Y
1, <0 =0 >0 <0 #0 =20 T
T O O (U IR I IR Y
<0|L, T. <0 <0 7. T. <0 T
=0|1l, >0 =0 <0 20 #0 <0 T
X >0 L, >0 >0 T. >0 T. T T
0L >0 <0 #. T T <0 T
|1l . #0 T T T T T
20 (L. >0 20 . 20 . T T
Tl T T T T T T T

¢ “Abstract Interpretation, Semantics, Verification, and Analysis”

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Calculational design of the rule of signs

>O T+ <0

>

o.({x—y|x€p.(>0) Ay € y.(<0)}
= a.({x-y|x>0Ay<0})
=a({x-ylx>0A-y=>0})

C aw(fx-ylx-y>0}

= a.({z |z >0})

= >0

Same calculus for all other cases (can be automated with a theorem prover, so called
predicate abstraction).
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Sign abstract semantics (revisited)

= |f a variable y has sign L., then y.(1.) = & so the expression is not evaluated hence
returns no value

s Define T*[P]s 2 (Jy € V.P(y) = L. ? L. 3s) to force returning L. if a variable has
abstract value 1.

= The following sign abstract semantics is more precise:

S*[1[P = T*[P](>0) (3.19)
S*[x][p = T*[PI(P(x))
S [A - AJP = (8*[A]P) ~ (8*[A]P)

= |t follows that Ix € V. P(x) = L. implies $*[A]P = L..
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Soundness
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Sign concretization

= Sign
puo(Lly) =2 O y:(€0) = {zeZ]|z<0} (3.21)
y:(<0) = {z€Z|z<0} y.(#0) = {z€Z|z#0}
p(=0) = {0} p(0) 2 {zeZ|z30)
y:(>0) = {ze€Z|z>0} y:(T) = Z
= Sign environment
7:(p) = {peV—>Z|VxeV.px) e y(p(x)} (3.22)

= Sign abstract property

7.(P) 2 {8e(V—-2Z)—Z|VpeV —>P*.Vpep.(p). S(p) €y(P(p)} (3.23)
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Sign abstraction

= Value property
a(P) =

Q
=)
=

(3.28)
|z<0}‘-’<0

} =0

z|z>0}7>0

z|z<0}%?<0

z|z+0}7?+0

z|z=07? 20

acBilavBla B B - B Il
= 1N N N 1N 1N N N

{z
{0
{
{
{
{

00 e e e e ==

i

= Environment property
a.(P) = AxeVea.({p(x)|peP}) (3.31)

= Semantics property

@(P) = ApeV > P -a.({S(p)| 8 € PApep(p)} (3.32)
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Example of environment property abstraction
= The property of environments such that x is equal to 1:
{peV-2Z]|p(x)=1}
= Sign abstraction:
wllpeV—2Z|px)=1)
= AyeVea({ply) lpel{peV = Z|p(x)=1}})
= AyeV:(y=x7%a.({1}) sa.(Z))
= AyeV-(y=x2>0:T.)
= Sign concretization:
peAyeVe(y=x72>0:sT.))
2 {peV-oZ|VzeV.p(z)ep.(AyeV(y=x7%>0:T.)(2)}
={peV—>2Z]|p(x) >0}
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Galois connections

= Value to sign "
(), <) = (P*, )
= Value environment to sign environment
@V = 2), ) == (V> P*, &)
= Semantic to sign abstract semantic property
@V > 2) = 2), ©) == ((V > P*) —» P*, &)
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Soundness of the abstract sign semantics

The abstract sign semantics is an abstraction of the collecting property

8[A] < 7.(8*[A])
o @W(S[A) & SA]

IM: 1N

Precision loss: if the sign of x is <0 then the sign of x - x is T. not =0

The absolute value is abstracted away

= No precision loss for multiplication x
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Calculational design of the sign semantics
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Case when Ix € V. p(x) = L, so that y,(p) = &

— a.(8°[A]p

= a.({S(p) | 8 € S [A] Ap € 1(P)D) {def. (3.32) of d.§
= a.((A[A)(p) | p € 12(B)) (def. (3.11) of 8[A]§
= a.(9D) {Ix € V. p(x) = L. so that y.(p) = &
= 1. {def. (3.28) of a.§
: STAlp

{in accordance with (3.19) such that 3x € V. p(x) = L. implies $*[A]p = L..§
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Homework: Case of a variable x

. (S[x])p
— w(S(p) | 8 e 8] Ap (P {def. (3.32) of @ §
= a.({[x](p) | p € -(P)}) (def. (3.11) of $°[x]§
= a.(fp(x) | p € 9:(P)}) (def. (3.4) of A[x]§
= a.({p(x) | Yy € V. p(y) € y:(p(y))}) (def. (3.22) of y.§

= a.({p(x) | p(x) € y.(p(x))})
{since y.(p(y)) is not empty so for y # x, p(y) can be chosen arbitrarily to
satisfy p(y) € y:(p(y))§

= (x| x € (PO {letting x = p(x)}
= a.(y:(p(x))) {since S = {x | z € S} for any set S§
= p(x) {by (3.35), a. ° y. is the identity§
2 8*[x]p {in accordance with (3.19) when Vy € V. p(y) # L.§
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Other cases

» similar for &.(8°[1])p
= by structural induction for &.(S°[A; - A,])
= See the course notes in the appendix.
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Chapter 11

Galois Connections and Abstraction
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Galois connections

= Given posets (C, C) (the concrete domain) and (4, <) (the abstract domain), the
pair {(a, y) of functions & € C — A (the lower adjoint or abstraction) and y € 4 — C
(the upper-adjoint or concretization) is a Galois connection (GC) if and only if

VPeC.VPeA.a(P)<xP e PLCyP) (11.1)
which we write

(€. 5) == (4, %) .
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Example: homomorphic/partition abstraction

Let Cand Abesets, heC— A
o, (S) = {h(e) | e € S}
Yu(S) = {e € S | h(e) € S}

= (p(C), €) == (p(A), ©)
Proof
o,(8) S
& {h(e)|eeS}cS (def. a;,§
& VeeS. hle)eS (def. <§
o Scie|he) €S} (def. <§
& Scy,S) (def. y,5 O
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Duality in order theory

= The properties derived for C, L, T, LI, max, M, min, etc. are valid for the dual 3, T,
1, M, min, U, max, etc.

= [ntuition:
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Dual of a Galois connection

Y
= The dual of a Galois connection (C, C) ? (4, X) is the Galois connection (4,

== )

Proof (C, C) “"% 4, <)

S ax)ye xCyy) {def. Galois connection§

a(x) =y e x23y(y) {dual statement§
sy Ex e y<alx) (inverse order x J y & y C x§
o ypx)Cy e x<ay) {(dummy variable renaming§
s (4, %) % (C, C) {def. Galois connection§ o

= Dualization of a statement involving Galois connections consists in exchanging the
adjoints

= |f an adjoint has a property, its adjoint has the dual property
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Example of dualization
Lemma 1 If {(C, C) # (A4, %) then « is increasing. O
Proof Assume PC P'. By a(P') < a(P') we have P' C y(a(P)) so P C y(a(P")) by
transitivity hence a(P) C a(P") by definition of a GC, proving that « is increasing. o
Lemma 2 If (C, C) # (4, %) then y is increasing. O

Proof By duality (increasing is self-dual so the dual of "« is increasing” is “y is
increasing”). m
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. ) y
= |n a Galois connection {C, C) _)T (4, <) we haveacpea=a

Example of dualization

Proof homework For all x € C and y € 4,

— ax) < alx)
= x C p(a(x))
= a(x) < a(y(a(x)))
— () Ey(y)
= aly(y) <y
= a(p(a(x))) < alx)
— a(x) = a(y(a(x)))

= Thedualisyea-y=y.

4 “Abstract Interpretation, Semantics, Verification, and Analysis”

- 81/228 -

{ reflexivity §

Ldef. GC§

{« increasing§

{ reflexivity §

Ldef. GC§

{for y = a(x)§
(antisymmetry§ O
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Equivalent definition of Galois connections

= (G, L) _)‘—%— (4, <) ifand only if x € C = 4 and y € 4 — C satisfy
(1) «is increasing;
(2) y is increasing;
(3) Vx e C.xCy-alx) (ie. y-«ais extensive)
(4) VyeA.a-y(y) <y (ie. a-yis reductive) m
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« preserves existing lubs

Lemma 3 If (C, C) ;L__, (4, <) then « preserves lubs that may exist in Ci.e.
let U be the partially defined lub for C in C and Y be the partially defined lub
for < in 4. Let S € (C) be any subset of C. If | |S exists in C then the upper
bound Y{a(e) | e € S} exists in C and is equal to «(| |S). O

Proof By existence and definition of the lub | |S, we have Ve € S.eC | |S so

ale) < (| |S) since « is increasing. It follows that «(| |S) is an upper bound of
{a(e) | e € S}. Let u be any upper bound of this set {«(e) | e € S} so that

Ve € S . a(e) < u. By definition of a GC, Ve € S. e C y(u). So y(u) is an upper
bound of S. By existence and definition of the lub | |S, | |S C y(u) so (| |S) < u
proving that «(| |S), which exists since « is a total function, is the lub of

{a(e) | e € S} denoted Y{ale) | e € S}. O

= By duality y preserves existing meets.
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lub-preserving «

Lemma 4 If « preserves existing lubs and y(y) = | [{x € C | a(x) < y} is well-
defined then (€, £) == (4, <). o

Proof xC y(y)

= xC |_|{x' €Clalx) <y} (def. y§
= ax) < a(l_l{x' €C|alx) =< §2)) {« preserves existing lubs so is increasing§
= a(x) < Y{oc(x,) | x e CAax) < §%)) {« preserves existing lubs}
= alx)<y

(since y is an upper bound of {a(x) | a(x) < y} greater than or equal to the

Iub’Y{oc(x) II(x(x) <y} , ’
=>x<|_|{x €Clalx) =y} (since x € {x € C|a(x) =<y}
= x<p(y) (def. y§ O
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Uniqueness of adjoints

Lemma 5 In a Galois connection one adjoint uniquely determines the other. o

Proof Observe that VP € C . a(P) = N{P | «(P) < P} so, by definition of a GC,
a(P)=n{P | PC y(P)} i.e. y uniquely determines a. Dually & uniquely determines y
since VP € 4. y(P) = U{P | «(P) < P}. O

= This lemma is useful in situations where only one adjoint is defined explicitly since
then the other is also uniquely determined.

= Note: for given concrete and abstract partial orders
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Galois retraction (surjection /insertion)

= I (C, ©) == (4, <) then
= « is surjective, if and only if
= y is injective, if and only if
» VPeA.a-yP)=P.
= This is denoted (C, C) % (4, <) and called a Galois retraction (Galois
surjection, insertion, etc.).
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Abstraction
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Sound abstraction

= Assume (C, C) # 4, %)

» We say that P € 4 is a sound abstraction of P € C if and only if
PCy(P)
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Examples of sound abstractions

T

p(Lly) 2 @
7, ) = <o/ \>0 <0 2z lz2<0)
co e - p:(20) 2 {z]z>0}
\\l// () £ Z

property | sound abstractions

{1,42} >0 and T,

{o} <0, =0, and T,
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Better abstraction

Y
= Assume (C, C) = (4, <)
= Let P,,P, € 4 be sound abstractions of the concrete property P € C.

= We say that P, is better/more precise/stronger/less abstract than P, if and only if
P, <P,
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Best abstraction

y
= Assume (C, C) b— (4, <)

» Then a(P) is the best/most precise/strongest/least abstract property which is a
sound abstraction of the concrete property P.

Proof

= «a(P) is a sound abstraction of P since P C y(«(P)).
» a(P) is the least sound abstraction of P since a(P) = [[{P | P € y(P)}. O
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Examples of best abstractions

Y+ (Ls)

_ / \ 7:(<0)
:(>0)

\ / y:(T2)

N N
WV /A
o O
—_— =

—~
+
Irn
H+
~
Il
> 1> > >

NT T Q

property | sound abstractions | best abstraction

{1,42} >0 and T. =0

{o} <0, =0, and T, none

= There is no Galois connection between {(p(Z), <) and (P*, C*).
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Combination of Galois connections
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Composition of Galois connections

y
= The composition of Galois connections (P, C) _Tl— (P,, <) and (P,,
1
2 2

14 . . . ney
<) ____,‘—2 (P5, <) is the Galois connection (P, C) :: (P, Q).
(24 (22291
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Galois connections pairs
Y.
= Let (G, £1) = (A, <)) and (G, B5) == (4, <,);

= (C;%xC,, E) # (A4, x A4,, <), where
woa({x, p)) = {a;(x), x,(»)),
=YX, ) = (11(X), 2(»)), and

= L and < are componentwise.
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Higher-order Galois connections

Y2
Let (Cy, C;) &= (A4, %1) and (C,, ;) <—72— (4, <,);

» (C;—Cy 5y) —>E: (4,45 4,, %,), where
a=Afraye fey,, and
Y=Afeyofoa.

f

a,— 1 .4

(I, ()

c,—~ ¢,
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Conclusion on abstraction by Galois connections

= We can represent abstract program properties by posets and establish the
correspondence with the concrete properties using a Galois connection.

= The concrete order structure is preserved in the abstract and inversely.

= Otherwise stated concrete and abstract implications coincide up to the Galois
connection.

= So proofs in the abstract domain (4, <) using the abstract implication/order < is
valid in the concrete (C, C) for C, up to this GC.
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Bibliography on abstraction
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Verification and proofs

% “Abstract Interpretation, Semantics, Verification, and Analysis” —105/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Verification and proofs

= We show that verification methods and program logics are (non-computable)
abstractions of the program collecting semantics.
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Program properties
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Program semantic properties

= The entities are semantics of program P i.e. sets of maximal traces € = (T**)

= The properties are sets of semantics of program P i.e. sets of sets of maximal traces
0(C) = p(p(T**))?

2also called “hyperproperties”
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Example of program semantic property

P2p({reT | plmx=0)Up{reT"|p(m)x=1}) € @p(T))
= P means “all executions of P always terminate with x = 0 or all executions of P
always terminate with x = 1".
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Example of program semantic property (Cont'd)

= Assume program P has this property P so §"°[P] € P.
= Executing program P once, we know the result of all other executions.

= |f the execution terminates with x = 0 (respectively x = 1) the property P implies
that all other possible executions will always terminate with x = 0 (respectively
x =1).
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Collecting semantics
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Collecting semantics (for maximal traces)

= The strongest semantic property of program P

SPl £ 8™} . (85)

= Program P has property P € p(p(T™*)) is
= §°[P] € P, or equivalently
» {8™°[P]} € P ie. Pisimplied by the collecting semantics of program P.

= So we can use implication € (=) instead of € (with no direct equivalent for
predicates in logic).
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Trace properties
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Trace properties

= By “program property” or “semantic property” most computer scientists refer to
“trace properties”

= elements G = T, traces
= trace properties p(€) = p(T)

= safety and liveness are trace properties
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Example of trace properties

= the program trace semantics & *°[P] € p(T*®) is a trace property.

» {meT"| p(m)x =0} € p(T*®) is the trace property of “terminating with x=0".

s P={reT"|p(m)x € {0,1}} € p(T™) is the trace property of “terminating with
x=0 or x=1".

>0 —>0—>0 x—() >0 0—>0—>0x—]
P - *—>e—>0 - 0—>0—>0x—() *—>o—>e - —>o—>0x—]

*—>o—>e >0 x—() *—>o—>e 00—

*—ro—>e - 0—>0—>0x—() >0 - 0—>0—>0X—]

= Trace properties in @(T"*) are less expressive than semantic properties in
(1)
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Abstraction of a semantic property into a trace property

= Any semantic property P can be abstracted into a less precise trace property o' (P)

defined as
al € pp(TT™)) - @(TT) Y€ p(T™°) = p(p(TT))
a'(P) = [JP y'(P) = g(P)

e oo rex—( [ —r———" —reroo—sex—( e s orerex—]

e ro e e sex—() | ~—re—e-e—rex=] 0 e —ree—rex—1

ore-e—re—rex—( orere-ererex—| P T —ro-e—re—rex—( —ro—rer—ro—rox—]
p= =a'(P) =

e —————e . »

—reroosex—0 | ... oo reerex—] —rereorex—( —re—rp-a—rex—1

et evesexd DG T R GO » .

» P and P both express that program executions always terminate with a boolean
value for x.

» P is stronger since it expresses that the result is always the same while P doesn't.
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Abstraction of a semantic property into a trace property (Cont'd)

T
= Galois connection (p(p(T**)), <) L‘ZZ (p(T*), <)

= Proof:
a'(P)c P
s UP cP (def. o' §
o {x|3XeP.xeX}cP (def. |J§
©VXeP.VxeX.x€eP (def. c§
©VXeP.XCP (def. <§
© Pc{X|XcPh} (def. <§
& P cp(P) (def. ©f
& Pcy'(P) (def. y".§

» o is surjective (since a'({P}) = P).
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Reachability properties
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Reachability property

A relation 7(¢) between values of variables attached to each program point ¢ that holds
whenever the program point ¢ is reached during execution

2, /* x=0 */

X=x+1;
whilet (tt) /* 1<x<2 %/ {
[ /* 1<x<2 %/
X=x+1;
ifl (x>2) /*x 2<x<3 %/
4 /* x=3 %/
break ;
} 1(6)2{p € Ev | Vy € V.. p(y) = 0}
& /x x=3 %/ I(®L)2I(B)2Hp e Ev | 1 < p(x) S2AVy € V\ {x}. p(y) =0}
; 7(L)2{p € Ev | 2 < p(x) S3AVy € V\ {x} . p(y) = 0}
& /x x=3 %/ 1()21(%)=1(4)={p € Ev | p(x) =3 AVy € V\ {x}. p(y) = 0}
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Abstraction of a trace property into a reachability property

OCU

o' (IT)

E(T*°) - (L - p(Ev)) (8.12)
At{p(met) | In' . nen' € I}

[l> m

collects at each program point ¢ of each trace the possible values of the variables at
that point.
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Abstraction of a trace property into a reachability property (Cont'd)

(]
= Galois connection (p(T**), c) in— (L — p(Ev)), <)

= Proof:

ol(I1) € 7
& At={p(nt) | In' . mtn' €11} £ 1 (def. a'§
& Ve . {p(nt) | In' . men’ € IT} < 1(¢) { pointwise def. £§
o Ve . {p(nt) | Imrell.In' . 7w =mntn'} C 1(¢) (def. €
o V. Vaell . Va' .7 =ntn' = p(rt) € 1(¢) {def. c§
e Vrell . Va' . Ve.m=mntn' = p(nt) € 1(¢) (def. V§
s Ilc{m|Vn . Vt.7=mntn' = p(nt) € 1(¢)} (def. c§
e I cy'(D)

by defining y'(2) 2 {7 | Va' . V¢ . T = ntn’ = p(me) € 1(¢)}.
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Hierarchy of program properties
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Hierarchy of program properties/semantics

S'[P] = «(S'[P]) invariance/

L — p(Ev) = o -a'(8°[P]) reachability
semantics

= 8§8"°[r] trace semantics

= a'(S[P])

P M) 8] 2 {S$*[PL,

collecting semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —123/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Chapter 16

Fixpoint abstraction
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Fixpoint abstraction

= (C is a concrete domain
f € C—>C is an increasing concrete transformer

y
(C, C) _? (4, <) is an abstraction into 4

Problem: abstract Ifp® f
= first abstract the concrete transformer f into an abstract transformer
fea—-=-2Aa
= then abstract «(Ifp" f) into Ifp™ f.
= This abstraction may be
« exact ie. a(lfp® f) = Ifp* f
= or sound but imprecise, in which case we get an overapproximation

a(Ifp f) < Ifp* f.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —125/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Example of fixpoint abstraction

exact fixpoint abstraction imprecise fixpoint abstraction
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Transformer abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” —127/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Transformer abstraction

= To abstract a fixpoint «(Ifp” f), we first abstract its transformer f.

Theorem (16.1, transformer abstraction) If (C, C) # (4, <) then (C—2%>
C, O) é (A—>4, <) where C and < are pointwise (i.e. f C g if and only if
VxeC. f(x)C gx), a(f) =a-fep,and p(f) =y f-a.
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Fixpoint over-approximation
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Fixpoint over-approximation

= |n general abstracting the fixpoint transformer by a larger one yields a fixpoint
over-approximation.

y y y
Ifp F / ifp F / Ifp F
a(fp f)[7F o a(lfp f) = a(lfp f) .
Ifp f J g Ifp f Tl iy — ¢
L f b
a X & X L4 X
0 1 0 1 0 1
fef Vx. f(x)Ex= f(x)Cx

Vx CIfp" f. f(x) C f(x)

fixpoint over-approximation
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Fixpoint over-approximation (cont’d)

Theorem (16.3, pointwise fixpoint over-approximation) Assume that (C,C,
1, T, U, ) is a complete lattice, f,g € C—<>C are increasing, and f C g then
Ifp" f CIfpg.

= Also valid for cpos.

y
ifp £ /
a(ifp )7 Y
ifp f J g
£
a X

<
< >
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Sound fixpoint abstraction

» An abstract fixpoint Ifp* f is a sound fixpoint abstraction of a concrete fixpoint

Ifp" f whenever a(Ifp~ f) < Ifp™ f.

Theorem (16.6, fixpoint over-approximation in a complete lattice) Assume
Y

that (C,C, 1, T, U, M) and (4, %, 0, 1, ¥, A) are complete lattices, (C, E) ___>‘—a (A4,

<), and f € C—>C is increasing. Then Ifp~ f Cy(Ifp e f - y).

fcxul
foeuf

f 2-f(f2)
=
fz V fl
fI
fo- d Frea(t)
€ ¢ o
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Sound fixpoint abstraction (cont'd)

Corollary (16.8, fixpoint approximation by transformer over-approximation)
Assume that (C, C, L, T, U, M) and {4, <, 0, 1, Y, A) are complete lattices, {C,
Y — . . .=

L) == (A, <), feC—Cand f € A—+>A are increasing, and « * f -y < f.

Then Ifp° f C y(Ifp™ f).

also in a cpo
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Theorem (16.12, fixpoint over-approximation in a cpo) Assume that (C,C,

y
1, Uy is a cpo and (4, %, 0, A) are cpos, (C, C) % (4, %), and feC*C
is upper continuous.

Then Ifp® f Cy(Ifp = f = p).

foo+1
fe=uf
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Corollary (16.10, fixpoint approximation by semi-commuting trarlsformer)
Under the hypotheses of Corollary 16.8 assume instead that a - f < f - « (semi-
commutation). Then Ifp® f C y(Ifp™ f).
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Exact fixpoint abstraction
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Exact versus sound fixpoint abstraction

» A sound fixpoint abstraction «a(Ifp" f) < Ifp* f is
= exact when a(Ifp® f) = Ifp™ f. B
» |t is sound but approximate (or imprecise) when a(Ifp= f) < Ifp™ f.
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Exact fixpoint abstraction

Theorem (16.15, exact fixpoint abstraction in a complete lattice) Assume
that (C, C, 1, T, U, M) and (4, £, 0, 1, Y, A) are complete lattices, f € C—2>C

y — _
is increasing, (C, C) ? (4, %), feA—-+Aisincreasing, and a° f = f o«

(commutation property). Then a(Ifp” f) = Ifp™ f.

fo-
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Exact fixpoint abstraction (cont'd)

Theorem (16.16, exact fixpoint abstraction in a cpo) Assume that (C, C,
1, ) is acpo, f € C > C is upper continuous, (C, C) _? (4, <) is a Galois
retraction, and f € 4 — 4 satisfies the commutation property a - f = f - «.
Then f=a- f -y isincreasing and a(Ifp® f) = Ifp™ f = YN?n(oc(J_)).

ne
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Reachability semantics
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Reachability abstraction
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Assertional abstraction

post (8) Ryt 2 {p(mborr,t) | p(myts) € Ry A (18.1)
torr, ¢ € 8(mybo) AU =t}

[S 8(7‘[080)

& 4
Ty | 4! | Us)

p(mgt) € Ry plrytor;?) € post™(8) R, ¢

T = (T, &) __WV—F (Q(Ev) — L — p(Ev), <)
pos
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Assertional abstraction, Example

6 x=x+1; (4.4)
whilet, (tt) {

G x=x+1;
if & (x> 2) & break ;}%;¢

We assume that all variables are initialized to 0. Maximal trace semantics

a = = _'(X>2) = 2
8 = {21 X ! £, t € X 2 £y ) t £ x S €y x> (61)

break skip

£ (’,7}

The reachable states are

&5

3}

post?(S)Roﬁ
LRy, = {pelkv|VyeV.p(y) =0}
6,8 {p[x<—i]|pe‘]{0/\ie[l,2]}
4 [ {plx —il | peRyNiel23]}
35)36’87 {P[x<_3]|P€R0}

]
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Calculational design of
the reachability semantics
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Calculational design of the reachability semantics

= by structural induction
= by calculating the exact reachability transformer from the prefix trace transformer
= by applying the exact fixpoint abstraction 16.15 for the iteration
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Reachability semantics of the assignment

Reachability of an assignment statement S ::= x = A ;

(¢ =at[s] ? R, (17.10)
[

S ?[[5]] Ryt

¢ = after[s] ? assign’[x, A] R,
%)
{plx — A[Alp] | p € Ry}

—

I3

assign[x, A] R,

% “Abstract Interpretation, Semantics, Verification, and Analysis” —146/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Reachability semantics of the conditional

Reachability of a conditional statement S ::=if (B) S,
87s] Roe = (¢=at[s] ? R, (17.18)
Jeein]s,] 2 8Ts,] (test'[B]R,) ¢
] ¢ = after[s] 2 8 7[s,] (test'[B]R,,) ¢ U (test [B]R,)
s )
testj[s]]a(o 2 (peR,| B[s]p = tt}
testBlR, = (p <Ry | Blslp = )
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Reachability semantics of the statement list

Reachability of a statement list S1 ::= SU S

STIsUR,t = (¢ e€labs[sU]\{at[s]} ? ST[SU]R, ¢ (17.20)
] ¢ € labs[s] 2 8 [s](S T[sU]R, at[s]) ¢
s D)
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Reachability semantics of the iteration

Reachability of an iteration statement S ::= whilet (B) S,

STs| Ry ¢ = (fp° Fwhilet (B) S,] Ry) ¢ (17.14)
Fwhilet (B) S,] Ry X ¢ =

(v =2 RyUSTs,] (test[B]X(2)) ¢

¢ ein[s,]\{&} 2 87s,] (test™[B]X(2)) ¢

| ¢ = after[[s] @ test [B](X(¢)) U ) 87sy] test[B]X(0)) ¢

" ebreaks-of[s,]
3 )
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Abstract domain and abstract interpreter
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Abstract domain
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¢
7

The domain of properties, inclusion (i.e. logical implication), and the structural
definitions of the semantics have the following common structure.

semantics prefix trace 8* reachability ST | abstract 8%
(T =2 (L - @(Th) | p(Ev) =2 (L > p(Ev)) | PP -2 1 — PH)
domain p(Th) ©(Ev) P2
inclusion c c Co
. 3 .

abstraction 1o &p Ay

infimum @ %) 1

join U U Hie

assignment assign*[x, A] assign’[x, A] assign™[[x, A]

test test*[B] test'[B] test” [B]
test*[B] test'[B] test " [B]

3132 Ax €S+ x is the identity function on the set S.
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Definition (19.1, Domain well-definedness) We say that a domain
D* 2 (P®, 7, 17, U”, assign”[x,A], test”[B], test™[B])

is well-defined when (P™,C™) is a poset of properties with infimum 17, the lub U™ is
well-defined for pairs of properties, and C”-increasing chains (so (P, C*) is a join-
lattice and a cpo), the assignment assign™ is well-defined in (V x £) —» P¥ P~
and the tests test” [B] and test”[B] are well-defined in B — P* - P~.

The abstract domain D™ is an algebra while the domain of abstract properties P™ is a
set. So the mathematical structures are different. However, following mathematicians

that call Z the “ring of integers” where a ring is an algebraic structure and Z is a set,
we often say, by abuse of language, that P® an abstract domain.
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Abstract structural semantics/interpreter
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The semantics can be implemented as instances of a generic abstract interpreter
defined below.

» Abstract semantics of a statement list SU::= SU' S
ST[s1 Ryt 2 (¢elabs[sU]\ {at][s]} 2 8= [sU] R, ® (19.5)
| ¢ € labs[s] 2 & % [s](S ®[sU] R, at[s]) ¢
s 17)
= Abstract semantics of an empty statement list S ::= €
ST Ryt 2 (t=at[S1] 2R,z L") (19.6)
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»  Abstract semantics of an assignment statement S ::= x = A

¢ =ats] ? R, (19.7)
t = after[s] 7 assign™[x,A] R,
17)

S¥[s|Rot = (
)

where assign[x, A ¢ y C y ° assign™[x, A].
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= Abstract semantics of a conditional statement S ::=1if (B) S,

ST[s] Ryt = (¢=at[s] 2R, (19.9)
J¢einfs,] 2 87[s,] (test™[B] R,) ¢
| ¢ = after[s] ?
8 *[s,] (test” [B] R ) ¢ U™ test” [B] R,
s 17)

where test[B] - y C y - test”[B] and test[B] - y C y - test*[B].
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= Abstract semantics of an iteration statement S ::=whilet (B) S,

SE[s] R, ¥ = Ifp~ (F7[whilet (B) S,] Ry) ¥ (19.11)
Iwhitet (B) 5] € P* - (L - P¥) - (L - P%))

“lwhitee (B) S, Ry X ¢ =

(V=2 RyU" 8§7[s,] (test™[B]X(¢)) ¢

¢ ein[s,] \{e} 2 8 7[s,] (test™[B]X(¢)) ¢

[ = after[s] 2 test“ [B]X®) L™ | |7 8%[sy] (test®[B]X(®) ¥
2" cbreaks-of[[s,]

F
F

s 17)
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»  Abstract semantics of a break statement S ::= ¢ break ;

SE[s] Ryt = (t=at[s]?Rys L") (19.12)
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Proof methods
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Invariance proof methods

= |nvariance proof methods derive from the reachability semantics
= abstraction to verification conditions — Turing/Floyd/Naur proof method
= abstraction to Hoare triples — Hoare logic
= Fixpoints:

Theorem (22.1, Fixpoint induction) Let f € L —> L be an increasing
function on a complete lattice (£, C, 1, T, M, U) and P € L.
We have Ifp® fCP o 3l e L. fU)CIAICP.
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Bibliography on verification and proofs
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The End of Part 3
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Symbolic abstraction:
dependency analysis
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Motivation
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Dependency

Found in many reasonings on programs:
= Non-interference (confidentiality, integrity)
= Security, privacy
= Program slicing

= Temporal dependencies in synchronous languages (Esterelle, Lustre, Signal, ..
called causality there)

= etc.
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Dependency

The existing definitions

= are given a priori (e.g. Cheney, Ahmed, and Acar, 2011; D. E. Denning and
P. J. Denning, 1977),

= without semantics justification (except Assaf, Naumann, Signoles, Totel, and
Tronel, 2017 (“hyper-collecting semantics”), Urban and Miiller, 2018)

= are dependencies on program exit only

Our objective is to study principles, not to get a new powerful dependency analysis
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Dependency, informally
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Functional dependency

= A function f(...,x,...) depends on its parameter x if and only if changing only this
parameter changes the result

Axpxy . flx,) #F fxy,.00)

= Example: f(x,y) =x—(y — y) depends on x but not on y
= Definition:

.rfrdni = {f | Elxla---’xn’xil 'f(xl""’xz 1> Xip Xig 15 -0 5 Xy ):/:
S ey X X X 15 e X)) (44.1)
U U K> ni

neN, 1<isn

>

Fd

¢
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Non-interference

= Given low variables L (e.g. “public” respectively “untainted”) and high variables H
(“private/conf" respectively “tainted”)

= Non-interference (Cohen, 1977; Goguen and Meseguer, 1982, 1984; Mantel, 2003)
is defined as “if executions start with the same values of the low variables then,
upon termination, if ever, the low variables are equal (so changing initial high
variables cannot change final low variables)

= The non-interference property is therefore

Ni(L,H) = {Ilep(TxT®)|V(ny, n),(my, n')y e IN(THxTH).
(Vx € L. p(my)x = p(my)x) = (Vx € L. p(mmy = m)x = p(ry - ')x)}

Interference during the computation and non termination are not taken into
account.
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General idea of dependency

= y depends on the initial value x, of x at ¢ if and only if changing x, changes the
future observations of y at ¢

= We consider dependency on initial values of variables

More generally, changing an abstraction of the past at ¢ changes an abstraction of
the future after ¢
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Dependency is local

mLy=0;3by=x;36
= the value of y at & is the initial value y, of y at &
Changing the initial value of x does not change the value of y at & so
y does not depend on the initial value of x at ¢

= the value of y at & is 0.
Changing the initial value of x does not change the value of y at ¢ so
y does not depend on the initial value of x at ¢

= the value of y at ¢ is the initial value x; of x.
Changing the initial value of x changes the value of y at ¢ so
y depends on the initial value of x at &

= dependency upon the initial value of variables is local (may be different at different
program points).
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Dependency depends on values of variables

{if (x=0) y=x; else y=0;} ¢
= The value of y at ¢ is always 0, no dependency

{if (x=0) y=x; else y=1;} ¢
= The value of y at ¢ is
» if x, =0 then “0"
= if x5 # 0 then 1"
= y at ¢ depends on x; (unless (xo =0A Yy, =0)V(xy #0A y, =1))

= dependency of y upon the initial value x, of x depends on the initial and current
values of x and y

= this is ignored in D. E. Denning and P. J. Denning, 1977's dataflow analysis
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Dependency depends on sequences of observations of values of variables

P, = while ¢ (0==0) x=x+1;
» One canobserve x,-x,+1-x5+2 x5+ 17 x5+ 18 ...x,+42-x,+43-... at ¢
= changing the initial value x; of x changes this observation
= x at ¢ depends upon x,

Py = x=0; while ¢ (0==0) x=x+1;
» Onecanobserve 0-1-2-...17-18-...-42-43-... at ¢
» changing the initial value x, of x does not change this observation
= x at ¢ does not depend upon x,

= We must observe the maximal sequence of values successively taken by a variable at
a program point
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Counterfactual dependency: absence of observation
int x,y; if (x=0) { y=x; ¢}

= Observation of y at ¢:
» if x, =0 then “0"

= if x, # 0 then """ (empty observations: no execution ever reaches ¢)

= Dependency if empty observations are taken into account
= No dependency if empty observations are not taken into account
= The choice is completely arbitrary!
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Counterfactual value dependency: absence of observation

int x,y,z; if (x=0) { y=x; ¢}

= Assume that empty observations are taken into account (so y depends on x,)
= QObservation of z at ¢:
» if x, =0 then "z," (initial value of z)
= if x, # 0 then “" (empty observations: no execution ever reaches t)
= Two different observations at ¢!
= Should z depends on x, at ¢?
= The choice is completely arbitrary!
= No
= Yes

= Yes if the value of z at ¢ is different from z,, (D. E. Denning and P. J. Denning,
1977)
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Timing dependency

whilet (x>0) x=x-13

Does variable y (s.t. y # x) at ¢ depends on the initial value x, of x?
= The observation of y at ¢ is y,- yy - ... - ¥, repeated x, + 1 times.
= So changing x, changes the observation of y at ¢

This is a covert/side channel (Lampson, 1973; Mulder, Eisenbarth, and Schaumont,
2018), more precisely, a timing channel (Russo, Hughes, Naumann, and Sabelfeld,
2006; Sabelfeld and Myers, 2003)

The choice of ignoring timing channel is arbitrary

Ignored in the classical definition of dependency D. E. Denning and P. J. Denning,
1977

One way of ignoring timing channels is to require that observation sequences must
differ by at least one data
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Counterfactual timing dependency

/* x{0,1} */ while (x I=0) ty=x;

= |f x, = 1, the infinite sequence of values of y observed at ¢ is y,-1-1---.
= |f x, =0, then the observation at ¢ is the empty sequence ».
= Does y at ¢ depends on the initial value x;, of x?

= This depends on hypotheses on observables. Is an infinite sequence of values
observable? Is the empty sequence 5 of values observable?

= This is debatable and problem-specific

= For example if a program terminates it is easy to check on program termination
that a program point is never reached. This may be considered impossible with
non-termination.
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Dependency, formally
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Future observations

= initialisation trace m, € T*
= (non empty) continuation trace 7 € T

» futurefy]¢(m,, m) is the sequence of values of y successively observed at program

point point ¢ in the trace 7 continuing 7, 4
futurey]e(m,,8) = p(my)y
futurey]e(m,,¢) = o
future[[y]]ﬁ(ﬂo,f L) EHT[) ) P(T[O)y . future[[y]]e(n.o Ny L) e//) 3”7'[)

future[y]e(m, - ¢ 2 ¢, ¢'7)

1>

future[y]e(my, ¢’ —2 ¢'77)

= future[y]¢(m,, ) is the empty sequence 3 if ¢ does not appear in 7

4this should be understood as a bi-inductive definition of P. Cousot and R. Cousot, 2009 to properly handle non-termination
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Observations

= An observation (v, w) of a variable at a program point is a pair of

= an initial value v of the variable
= the future observation w of this variable from that program point on
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Differences between future observations (v, w) and (v/, @’) (1)
(1) Counterfactual timing dependency:
ctdep({v, w), (v, 0')) = w# '
(empty observations are allowed)
(2) Timing dependency:
tdep({v, w), (V, @) 2 wtw' Aw+s3Aw #3

(empty observations are disallowed)
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Differences between future observations (v, w) and {v/, w') (Il)

(3) Value dependency:

Vdep((Xa w>a <2’) (U,)) é EI('0()’ wla wll)v) V’ .
w=wy - v-w Aw' =wy-v' -] AV EY

(different values of the variable must be observed)

Example 6 if& (x==1) {ty=x;061}6&
y does not depend on x at &, &, and & but y depends on x at ¢ (unless y = 1 at &).
o
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Differences between future observations (v, w) and (v/, w') (llI)

(4) counterfactual value dependency:

a

cvdep({v, w), (v, ')) = vdep({v, w), V', 0')) v
(w=aAw #3)V(w+aAw =23)

(an empty observation is allowed)

Example 7 if& (x==1) {tiy=x3;8%1}84
y depends on x at & (unless y =1 at &).
Any variable depends on the initial value of x at & and ¢.. ]
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Differences between future observations (v, w) and (v/, w') (IV)

(5) Counterfactual multi-values dependency:

cmvdp((v, w), (v, @')) = vdep((v, w), (v, @')) Vv
(w=23AJwp,V,w) .0 =wy-v -] AV #V')V
(W' =3ANJwy,v,w; . w=wy-v-w, AV #V)

(an empty observation is allowed for variables which value has changed)

Example 8 if& (x==1) {ty=x;061}6&

No variable depends on the initial value of x at ¢ and only y at & (unless y is
initially 1).

This is D. E. Denning and P. J. Denning, 1977. m|
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Formal definition of dependency

Dependency property:

Dyeptx, y) = {Il € (T x T*) | Iy, my), (g, 7)) € I1.

(Vz € V\ {x}. p(my)z = p(m()z) A
dep({p(my)y, future[y]e(my, 7)), {p(ry)y, future[y]e(ry, 7))}

choose dep € {vdep, cmvdp, cvdep, tdep, ctdep} to get 5 different definitions

y depends on the initial value of x at point ¢ of program P is:

§+oo[[P]] € pdep?‘(X, y)

No necessary distinction between explicits and implicits flows as in D. E. Denning
and P. J. Denning, 1977
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Dependency lattice

D

ctdep
Z)vdep

= The more differences between observed futures, the more dependencies;

= Not clear with postulated definitions (such as the hydraulic model where
dependency depends on the rules to mix colors)
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Why maximal traces?

= For prefix traces, if a trace is in the semantics, all of its prefixes are also in the
semantics, which introduces artificial timing channels

% “Abstract Interpretation, Semantics, Verification, and Analysis” —190/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Prefix traces for dependency on values

= For value dependencies, the maximal trace semantics can be replaced by the prefix
trace semantics withou problem:

Lemma S™[P] € Dy, %, ¥) © S*[P] € Dygeptix, v)

= |dem if we include empty observations (the prefixes of & *[P], are never empty, so
no possible confusion)
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Dependency abstraction
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Abstraction of data dependency

= The abstraction of a semantic property S € p(p(T* x T**)) into a data dependency
property a’**(S) € L — (V x V) is:

(S = (% ¥) |5 € Diygeptx, )}

= This is a Galois connection:

vdep

Lemma 10 (p(p(T* x T*®)), <) y; (L — p(VxV), 2% where the
vdep
concretization of a dependency property D € L — g(V x V) is:

p@) 2 (1 () Duepti ¥)

el (x,y)eD®)

(the more semantics, the less dependencies)
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Value dependency static analysis
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Potential value dependency

= o P({8FP[s]}) = a*?({8*[S]}) is not computable (Rice theorem)

= We design an over-approximation:

Potential value dependency semantics 8 1 :

“vdep({8+mﬂs]]}) & §;dep[[s]]

= The abstraction of D. E. Denning and P. J. Denning, 1977 is purely syntactic (in
dataflow analysis style)

= We do slightly better, by taking values into account, in a very simple way
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Example
ifé (x==1) {& y=z ;(’,2 };83

= we have the potential value dependency:

I3 ‘ [N £ 15 [
§!dep[[sﬂ ¢ {6 x4y v, ysy)s Hzoy) {6 %), (%, v), (Y, v)s
(z, z)} (z, z)}  (z, )} (z, y),(z, 2)}

= this is an over-approximation since e.g. z flows to y at ¢ only when x =1 at &.
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Calculational design

» By calculus (in principle, can be checked with Coq like Jourdan, Laporte, Blazy,
Leroy, and Pichardie, 2015)

= By structural induction on the program syntax

= By fixpoint over-approximation for iterations:

Theorem (over-approximation of fixpoints) If (C, C, 1, T, U, M) and (4, %, 0,
y
1, v, A) are complete lattices, (C, C) % (4, <) is a Galois connection,

feC—Cand f € A4 are increasing and « » f £ f »  (semi-commutation)
then Ifp~ f C p(Ifp™ f).

= Finite domain, no widening needed
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Potential dependency semantics of assignment S ::= x = A

Suwfs]e = (t=at[s] 2 1y
[ ¢ = after[s] 2 {{y, x) | y € $[A]} U
{{y, v) |y # x}
3 D)

§99[A] 2 {y|Tpebv.veV.d[alp# A[Alply — v}
vars[A]

N

Example:
= after x =y -y ;, x depends on y.
= after x =y j x =y - x 3, x depends on the initial values of x and y
= To be more precise we would have to preserve information on the values of

variables (eg. x = y)
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Proof (don't read @) |

The cases ¢ = at[[S] was handled in (44.38) and ¢ ¢ labx[S] in (44.39). It remains the case
¢ = after[s].

adP({8*[s]}) after[s]
= a"*P({8*[s]}) after[s] (Lemma 44.25§
= {{x, y) | 87[s] € D, (after[S])(x’, y)} {def. (44.29) of a***® and def. c§
= {(x, y) | Imy, my), (g, w)) € 87[S] . Vz € V\ {X'} . p(my)z = p(mly)z A vdep({p(m,)y,

futurely] (after[S])(7ry, 711)), {p(rry)y, future[y](after[S]) (g, w))N)}

{def. € and (44.20) of D, ¢(x’, y)§

— (X y) | 3, ), 7y € {(mat]s], at[s] ———llPTED oqers]y | mat[s] e

T} . Vz e V\ {X'}. p(my)z = p(rl)z A vdep({p(m,)y, future[y](after[S])(my, 7,)), {p(rr})y,
futurey] (after[S]) (g, 7))}

{def. (15.1) of the assignment prefix finite trace semantics§
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Proof (don't read @) I

x=d mya x=o ThHa
= ((xs y) | Smat[s], at[s] LD, apiers]), (rpat]s], atfs] ——mrt

after[s]) . VvVz e VvV \ {X} .  pmat[s)z =  pGpat[s])z A
vdep({p(y)y, future[y] (after[S])(rgat[s], at[s] ——adfT D | o rer[sT)), (p(rh)y,
futurey] (after[s])(myat[s], at[s] o pmaED after[S])))} {def. €§

— Wy Fmat[s], at[s] — ——tPIPmED o gers]), Grat]s],
x=oA mha
at[s] LIPSy . (vz € \(x') . plmgat[s])z = p(rhat[s])z)Avdep({p(ry)y,
x=9 [A] p(myat[s]) x=d [A] p(ryat[s])
P TP after[s])y))}

p(myat[[s] ———— after[s])y), (p(mp)y, p(myat[s]
{def. (44.14) of the future future[y]§

x=o [A] p(myat[s])
_—

= {{x, y) | Amyat[s], at[9] after[s]), (mpat[s],
at[s] “SIPTED | colsly . vz € W\ X} . pOmat[shz = pOrhat[s])z) A

x=od [A]p(myat[s])
((p(moat[s])y # p(myat[s]y) v (p(mpat[s])y = p(myat[s]y A p(myat[s] ———

x=d [A] p(mpat[s])
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Proof (don't read o) Il

{(44.18) so that vdep({x, a-b), (y, c-d)) if andonly if (1) a#cor (2)a=cAb+d.§

x=d [A] p(mat[s])

= {(x, y) | A(myat[s], at[s] _ after[s]), (mpat[s],

at[s] ——HIPTED | ocorls]y . (V2 € W\ X} . plrgat[s])z = pGrhat[s])z) A ((y =

XYV (y = x A d[A]plryat[s]) + A[A]pGrypat[s])))} {def. (6.2) of p§

c {1y =x)V(y=xA3p,v. d[A]p# d[A]p[x" —v])} (11)

Uletting p = p(myat[s]) and v = p(mpat[S])(x’) so that Vz € ¥V \ {x'} . p(m,at[s])z =
p(rpat[s])z implies that p(ryat[s]) = p[x’ « v].§

= {(x, xy | x" £ x}U{(x, x) | Fp,v. A[A]p + A[A]p[x" — Vv]} {case analysis§

= (!, XY | X # U, x) | X! € 8er]a]}

{by defining the functional dependency of an expression A as ?;de"[[A]] 2 {x'" | Jp,v.
dA[A]p # A[A]p[x’ — v]} in (44.41)§ O
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Potential dependency semantics of the conditional S ::=4f (B) S,
Sy[s]e = (t=at[s] 7Ty (a)
I ¢ cin[s,] 2 S:[s,] ¢ ] nondet(s, B) (b)
| ¢ = after[s] ?
§§dep [s,] after[s,] 1 nondet(B, B) (c.1)
U Ty ] nondet(—B, —B) (c.2)
U nondet(—B, -B) x mod[s,] (c.3)
s ) (d)

det(B,,B,) <
nondet(B;,B,) 2 V\det(B;,B,)

mod[x = E 3]

mod[;] £ mod[e] 2 mod[break ;]

mod[while (B) S] = mod[if (B) S]

mod[if (B) S, else S|

mod[{ Sl }]

mod[st s]

x| Vp,p". (BB ]p A B[B,]p") = (p(x) = p'(x))}

{1 L T L 1L L 114

determinacy
non-determinacy
{x} modified variables
%]
mod(s]
mod[s,] U mod[s/]
mod[s1]
mod[S1] U mod[s]
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= On entry (a), variables in ¥ only depend upon themselves as specified by the
identity relation Ty,.

= The reasoning in (b) is that if a variable y depends at ¢ on the initial value of a
variable x at at[s,], it depends in the same way on that initial value of the variable
x at at[s] since the test B has no side effect.
However, (b) also takes into account that if S, can only be reached for a unique
value of the variable x and the branch is not taken for all other values of x then the
variable y does not depend on x in S, since empty observations are disallowed by
vdep.

= (c) determines dependencies after S so compare two possible executions of that
statement. In case (c.1) both executions go through the true branch. In case (c.2)
both executions go through the false branch, while in case (c.3) the executions take
different branches.
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= In case (c.1) when the test is true tt for both executions, the executions of the true
branch S, terminate and control after S, reaches the program point after S (recall
that after[s,] = after[S]). The dependencies after S, propagate after S but only in
case of non-determinism, e.g. for variables that are not constant.

= The second case in (c.2) is for those executions for which the test B is false ff.
Variables depend on themselves at[s] and control moves to after[S] so that
dependencies are the same there, but only for variables that can reach after[s] with
different values on different executions as indicated by the restriction to
nondet(—B, —B).

= The third case in (c.3) is for pairs of executions, one through the true branch and
the other through the false branch. In that case y depends on x only if x does not
force execution to always take the same branch, meaning that x € nondet(-B, =B). If
y is not modified by the execution through S, then its value after S is always the
same as its value at[s] (since y is not modified on the false branch either). In that
case changing y at[S] would not change y after S so that, in that situation, y does
not depend on x. Therefore (c.3) requires that y € mod[s,].

% “Abstract Interpretation, Semantics, Verification, and Analysis” —204/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Note on the potential dependency semantics of the conditional
S:=1f (B) S,

= Empty observations are not taken into account
n e qif (X:Q) { y=X; El} 2,
= y does not depend on x at & neither at ¢
= y depends on x at &

= As already stated, this is different from D. E. Denning and P. J. Denning, 1977
implicitly allowing for counterfactual multi-values dependency cmvdp.
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Potential dependency semantics of the statement list S1 ::= S’ S

Sue[s]e 2 (¢ elabx[sU] 7 SWer[s1] ¢ (a)
| ¢ €labx[s] \ {at[s]} ?
Sus[sU] ats] 5 S [s] ¢ (b)
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Potential dependency semantics of the iteration S ::= whilet (B) S,

§;dep[[s]] ¢ = (Ifp° Flwhilet (B) S,]) ¢
F*whilet (B) S| X ¢ =
(v=e7
1, U (X(®) 3 (8“[s,] ¢ ] nondet(B, B)))
[I ¢ e In[[Sb]] ?
X(¢) 5 (8*[s,] ¢ 1 nondet(B, B))
| ¢ = after[s] ?
X(¢) U (X(¢) 3 (V x mod[s,])) U

X() g (( U ?;"e"[[sb]] B”) ] nondet(B, B))

" cbreaks-of[[s,]
s D)

(d)
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Example

S = whilet (tt) {tiy=2z ;8% z=x; }&.

The system of equations X = F4[s](X) is

X(®) = {{v, v) [ veVIu(X(e)s{{x x),{x z),{y, )}

X)) = X(%)

X&) = X(&)UX(E)s{(x x),{(z y)(z, 2)})

X&) = O

The chaotic iterations are
3 €, & ¢, 0

XO(e) %] %] (%)}
X'(v) {06 )<y, y), (2, 2)} {6 x),(z, y), (2, 2)} )
X2(v) {06 x), (%, 2),{y, ¥, (2, ¥), {2z, 2)} {06 x), (%, y) (%, 2),(z, y),{(z, 2)} &
X3 | {06 x5 06 ¥ (6 2),(ys ¥), (2, ¥), (2 20} {06 x), (% ¥), (%, 2),(z, ¥),(z, 2)} @
X4(e) X3(%) = X3(&) X3(%) 1%}
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The initial value xg of x flows to x at € on iteration entry, to z after the first iteration and so to y after the first iteration
The initial value yg of y flows only to y at € on iteration entry.
The initial value zg of z flows to z at € on iteration entry and then to y after the first iteration.
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The potential dependency semantics is not purely structural °

= Separate analysis of statements:

Ly=x; x and y at ¢ depend on x at &.
&
Ly=y-x3; x and y at & depend on x at ¢,.
12

Dependency analysis of the statement list:

14 =X

EO z —y ’ « y at ¢ depends on x at ¢ which depends on x at & so,
1 - - ..

0 ’ by composition, y at ¢ depends on x at &.

2

Yet, y =0 at & and so y at & do not depend on x at ¢.

A purely syntactic structural definition of dependency like & [s] is necessarily
imprecise (since values of variables are not taken into account)

50ne would say compositional in denotational semantics
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Improving precision

= To be more precise, values of variables must be taken into account

» Reduced product with a reachability analysis (for example Cortesi, Ferrara, Halder,
and Zanioli, 2018; Zanioli and Cortesi, 2011)
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Examples of derived depen-
dency semantics and analyzes
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Dye instrumented semantics
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Postulated definition of dependency (1)

= dye-tracer tests in hydrology: determine the possible origins of spring discharges or
resurgences by water source coloring and flow tracing

= dye instrumented semantics: decorate the initial values of variables with labels such
as color annotations and to track their diffusion and mixtures to determine
dependencies Cheney, Ahmed, and Acar, 2011.
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Postulated definition of dependency (II)

= This postulated definition of dependency can be proved sound by observing that the
initial color of variables can be designated by the name of these variables and that
the color mix at point ¢ for variable y is

{x | STC[P] € Dyept{x, y)}

= Note that in the postulated instrumented semantics, the choice of dep remains
implicit as defined by the arbitrarily selected color mixing rules.

= Like all instrumented semantics Jones and Nielson, 1995, it must be semantically
justified with respect to the non-instrumented semantics, in which case the
non-instrumented semantics can be used as well to justify dependency, as we do.
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Tracking analysis
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= Assume the initial values of variables (more generally inputs) are partitioned into
tracked 7" and untracked ¢/ variables,

V=TulUand TNU=9

= The tracking abstraction a"(D) of a dependency property D € L — p(V x V)
attaches to each program point ¢ the set of variables y which, at that program
point ¢, depend upon the initial value of at least one tracked variable x € 7.

af(D)t = {y|3IxeT .(x, y) € D)}

= A tracking analysis is an over-approximation of the abstract tracking semantics
S7[s] 2 a*(aP{S[s]})

assigning the each program point ¢, a set $T[s]¢ € (V) of variables potentially
depending on tracked variables.
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Examples of tracking analyses

= taint analysis in privacy/security checks Ferrara, Olivieri, and Spoto, 2018; Li,
Bissyandé, Papadakis, Rasthofer, Bartel, Octeau, Klein, and Traon, 2017 (tracked is
tainted, untracked is untainted);

= binding time analysis in offline partial evaluation Hatcliff, 1998; Jones, Sestoft, and
Sgndergaard, 1989 (tracked is dynamic, untracked is static)

= absence of interference Bowman and Ahmed, 2015; Cohen, 1977; Goguen and
Meseguer, 1982, 1984; Volpano, Irvine, and Smith, 1996 (tracked is high
(private/untrusted), untracked is low (public/trusted)).
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Conclusion
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Dependency is an abstract interpretation of the program semantics

= Dependency analysis is an abstract interpretation of the program semantics

= This include non-interference, “taint” analysis, etc.

= Data dependency analysis to detect parallelism in sequential codes Padua and
Wolfe, 1986 is also an abstract interpretation Tzolovski, 1997, Tzolovski, 2002,

Ch. 5.
= We have considered particular cases of dependency.
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¢

Conjecture: all dependencies are abstract interpretations

The semantics is a set of computations (7, tr') (where ¢ ¢ 7).
We define an abstraction of the past 7t (the initial state in our case)

We define an abstraction of the future (the sequence of values of a variable y
observées dans ¢7’ a each point ¢ dans ¢71').

We define a difference on pasts (changing the value of only one variable in our case)
We define a difference on futures (tdep, ctdep, vdep or cvdep in our case)

Dependency is then the future abstraction depends on the past abstraction iff a

change of the past changing its abstraction change the abstraction of the future.
By varying abstractions and the difference we change the notions of dependency
(and we should be able to recover the whole literature in that way).

Good examples are Giacobazzi and Mastroeni, 2018 for non-interference and
Barthe, Grégoire, and Laporte, 2017 for the protection against side channels attacks
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The End, Thank you

% “Abstract Interpretation, Semantics, Verification, and Analysis” —228/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Appendix

% “Abstract Interpretation, Semantics, Verification, and Analysis” —229/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018

7:26pm

3

Syntax, semantics, properties, and

static analysis of expressions

We introduce basic concepts of abstract interpretation using arithmetic and boolean expressions.
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3.1 The rule of signs

The Indian mathematician and astronomer Brahmagupta (born c. 598, died after 665) was the first
to give rules to compute with zero and invented the rule of signs [14, page 151]. Verses 18.30-35 of
his Brahma-sphut-a-siddhanta state

[The sum] of two positives is positive, of two negatives negative; of a positive and a negative [the
sum] is their difference; if they are equal it is zero. The sum of a negative and zero is negative, [that]

of a positive and zero positive, [and that] of two zeros zero.


https://en.wikipedia.org/wiki/Brahmagupta
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Ch. 3 Syntax, semantics, properties, and static analysis of expressions

A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When
a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

The product of a negative and a positive is negative, of two negatives positive, and of positives pos-
itive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.

A positive divided by a positive or a negative divided by a negative is positive; a zero divided by a
zero is zero; a positive divided by a negative is negative; a negative divided by a positive is [also]

negative.

A negative or a positive divided by zero has that [zero] as its divisor, or zero divided by a negative
or a positive [has that negative or positive as its divisor]. The square of a negative or of a positive is
positive; [the square] of zero is zero.

Exercise 3.1. What is the modern understanding of %?

Exercise 3.2 (Erroneous sign analysis).

O

Following the pseudo-evaluation idea of Peter Naur in

compilation [12, 13], Michel Sintzoff [16] postulates the sign analysis in the following way:

“a x a + b x byields always the object “pos” when a and b are the objects “pos” or “neg”, and when
the valuation is defined as follows :

pos+pos
pos+neg
neg+pos
neg+neg
V(p+q)
V(0)
V(-1)

pos

pos,neg
= pos,neg

neg
V(p)+V(q)
= V(1) =
= V(2) =

pos X pos
pos X neg
neq X pos
neg X neg
Vipxq)
= pos
= neg

pos
neg
neg
pos
V(p) x V(q)

The valuation of a X a + b x b yields “pos” by the following computation :

V(a) = posneg V(b)
V(axa) = posxpos, negxneg V(bxb)
= pos,pos = pos
Viaxa+bxb) = V(axa)+V(bxb) =

What is wrong about it?

pos+pos =

pos,neg
pos X pos, neg X neg
pos,pos =

pos”

pos

3.2 Sign analysis of iterative programs

The rule of signs generalizes to programs. For example the sign of x in
x+1 }
(where the iteration condition (...) is ignored) can be determined as follows:

x = 0; while (..) { x

* After zero iteration, when entering the loop, if ever, x = 0;

* After one iteration, the sign of x is zero, 1 is positive, so the sum x+1 of zero and positive is positive;
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* For the basis, we have shown that after zero or one iteration, the sign of x is zero (at iteration 0) or
positive (at iteration 1) that is positive after at most 1 iteration;

* For the induction step, if after at most n > 0 iterations, the sign of x is positive, then 1 is positive,
so the sum x+1 of positive and positive is positive after the next iteration;

* Afterat mostn+1 iterations, x is positive (at the previous n > 0 iterations) or positive (at the n+1-th
iteration) then x is positive after at most n + 1 iterations;

* By recurrence on the number of iterations in the loop, x is positive in the loop.

3.3 Sign abstraction, informally

The abstraction is that you do not (always) need to know the absolute value of the arguments to
know the sign of the result of an operation. This is sometimes precise (for example for the multipli-
cation) but can be imprecise (for example the sign of the sum of a positive and a negative is unknown
when ignoring the absolute value of the arguments). This is nevertheless useful in practice if you
know what to do when you don’t know the sign. For example, a compiler will not suppress the
lower bound check when accessing an array with an index not known to be positive. Moreover, it
is always possible to refine the abstraction to get more precise results. For example Brahmagupta
states [14, page 151]

[If] a smaller [positive] is to be subtracted from a larger positive, [the result] is positive; [if] a smaller
negative from a larger negative, [the result] is negative; [if] a larger [negative or positive is to be
subtracted] from a smaller [positive or negative, the algebraic sign of] their difference is reversed—
negative [becomes] positive and positive negative. ...

Knowing an interval of the possible values is more precise than just knowing the sign. Interval
analysis is considered is Chapter 31 (Static Interval Analyis).

The objective of this Chapter 3 is to formalize abstract interpretations of arithmetic expressions
(like the rule of signs) and to show how the abstraction can be formally calculated out of the se-
mantics of arithmetic expressions.

3.4 Syntax of expressions

Let us consider the language of expressions.

XY,... € V variables (V not empty)
€ A == 1|x]|A-A arithmetic expressions
B € B := A <A, | B;nandB, boolean expressions
€ E == A|B expressions

This context-free grammar specifies sets of program syntactic entities, the set ¥ of variables, A of
arithmetic expressions, B of boolean expressions, and £ of either arithmetic or boolean expressions.
The mathematical variables x, y, A, B, and E denote arbitrary elements of these sets.


https://en.wikipedia.org/wiki/Brahmagupta
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There syntax is defined by grammar rules such as A ::= 1 | x | A; - A, specifying that an
arithmetic expression A is either the constant 1, a variable x € V, or the difference A; - A, of two
arithmetic expressions A; and A,. The set V of variables is left unspecified (usually it is an identifier
starting with a letter followed by 0 or more letters or digits or special symbols like “_”).

This grammar is ambiguous since 1 - 1 -1 can either be understood as (1-1)-1o0or1-(1-1). We
choose the first alternative so the binary operator is left-associative. In boolean expressions, nand is
left-associative and the arithmetic operators have priority over boolean operators (so1-1<1-1-1
is ((1 - 1) <((1 - 1) - 1)) ie. false ff). The description of syntax by grammar dates back to Noam
Chomsky [4].

3.5 Structural definitions

Structural definitions are generalizations of recursive definitions on naturals. Assume that we want
to define a function f € £ — S where S is a set. A structural definition is a recursive definition of
the form

* f(1) and f(x) are defined to be constants (so f(1) £ ¢, and f(x) £ ¢, wherec,,c, € S);

* f(A; - A,) and f(A; < A,) are functions of f(A;) and f(A,) (so f(A; - A,) 2 F.(f(A)), f(A))),
F(A; <Ay) 2 E(f(A), f(A))

* f(BynandB,) = F  ,(f(By), f(B,)) where F_,F,F,_ ., €SxS—S.

Exercise 3.3. Define vars € £ — (V) such that vars[E] is the (possibly empty) set of variables
occurring in expression E. o

Structural definitions are the basis of denotational semantics introduced by Dana Scott and Christo-
pher Strachey [15] (and called compositional in this context).

3.6 Environments

In order to formally define the value of any expression e.g. 1 - 1 - 1 = —1, we need to know the value
of variables occurring in expressions e.g. x — 1is 2 when x = 3, x - 1 is 42 when x = 43, etc. We
cannot enumerate the infinitely many cases ..., x = =1, x = 0, x = 1, .... So we use an environment
p € Ev where Ev £ V — Z that is a function p mapping a variable x to its value p(x) in the set Z
of all mathematical integers. By reasoning on the function p we can handle infinitely many cases at
once. For example, in environment p, the value of x - 1 is p(x) — 1 where p(x) is the value of variable
x, 1 is the mathematical integer one and — is the mathematical difference.

12 js “is defined as”
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3.7 Structural semantics of expressions

Given an environment p € Ev 2 ¥V — Z mapping variables x € V to their value p(x) € Z, the
value d [A]p € Z of an arithmetic expression A € A and B[B]p € B of aboolean expression B € B
is structurally defined as follows.

Alp = 1 (3.4)
dx]p = px)
da -nlp = da]p-d]Alp
Bl <a)p = dla]p < dla]p
BB nandB,]p = B[e,]pT B[s,]p
S[e] & dJE] when E€A
S[E] & RB[E] when E€B

1, x, -, <, nand, A, and B are syntactic objects e.g. strings of characters. 1, p, —, <, and T are mathe-
matical objects. The recursive definition is structural i.e. by induction on the syntax of expressions
E (either arithmetic A or boolean B). The semantics of complex expressions o [A] or GB[B] is de-
fined in function of the semantics of simpler expressions until reaching basic cases A [1]p = 1
and o [x]p £ p(x) for which the value is constant. The “not and” or “nand” boolean operator T is

defined by the following truth table
a |t|t|ff|ff

b |t|ff|tt|ff

alb|fflt|t|t

The functions & and 9B will be shown to be a total functions i.e. well-defined for all their argu-
ments in Exercise 3.8. This shows that the recursion always terminates.

Exercise 3.5. Define the logical operators (negation -, implication =, conjunction V, disjunction
A) in terms of T. ]

Exercise 3.6. Write a program in the language of your choice that inputs (an encoding of) an
expression (with no variables) and returns the value of this expression. |

Exercise 3.7. Prove that any integer z € Z has a finite denotation in the syntax A of arithmetic
expressions. O

3.8 Proofs by structural induction

Proofs by structural induction [2] generalize proofs by recurrence. They are well suited for proving
properties of structural definitions. Rod Burstall [2] introduced them as follows “If for some set of
structures a structure has a certain property whenever all its proper constituents have that property
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then all the structures in the set have the property”. So, to prove that a property P holds for all
expressions E € [, we prove that the property holds for the basic cases 1 and x. Then assuming that
the property holds for A; and A,, we prove that it holds for A; - A, and A; < A,. Moreover, assuming
the property holds for boolean expressions B; and B,, we prove that it also holds for B, nand B,. We
conclude that £ ¢ P.

Exercise 3.8. Prove, by structural induction on the syntax of expressions, that 9 is a total function
ie. VB € B . RB[B] € (V — Z) — B. (The property to be proved is therefore P = {B € B | B[B] ¢
(V — Z) — B}). (A similar property has to be stated and proved for arithmetic expressions.) 0O

Exercise 3.9. Prove, by structural induction on the syntax of expressions, that if x ¢ vars[B] and
Vy € W\ {x}. p'(y) = p(y) then B[B]p = B[B]p’. (A similar property has to be stated and proved
for arithmetic expressions.) o

3.9 Semantic properties of expressions

By expression property we might mean a property of the syntax of the expression (such has A has 42
signs - more precisely A belongs to the set of expressions with 42 signs -). This is software metrics
and metrology [17], of little interest to us.

Instead an expression property will be understood as a semantic property that is a property of the
semantics of expressions.

The semantics o [A] of an expression A maps environments p € ¥ — Z toavaluesin Z, o [A] €
(V - Z) — Z. Following Section 2.3, a semantic property of an expression is a set of possible
semantics hence belongs to p((V — Z) — Z).If P € p((V — Z) — Z) is a semantic property,
then o [A] € P means that “A has property P”.

Example3.10 P={b|VpeV - Z .b(p) =tt}U{b|Vp eV = Z . b(p) = ff} is the semantic
property of a boolean expression “to always evaluate to tt” or “to always evaluate to ff”. For example
x % x+ 1> 0and x % x < 0 have this property but not x * x > 0 since x * x > 0 is sometimes
true (when |p(x)| > 0) and sometimes false (when |p(x)| = 0). So B[x * x + 1 > 0] € P while
Blx xx>0] ¢ P. ]

Notice that semantic properties P of expressions are just a particular case of property of expressions
i.e. the property {E € £ | S[E] € P}.

3.10 Collecting semantics of expressions
The collecting semantics of expressions is the strongest property of an expression.

S°[a] 2 {d[A]} € p((V—>2Z) - 2Z) (3.11)

Arithmetic expression A is said to have semantic property P € p((V — Z) — Z) if and only
if A[A] € P or equivalently 8°[A] < P so that $°[A] is the strongest property of A. The idea
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of collecting semantics was introduced in [6] (under the qualifier “static semantics”) as a basis for
proving the soundness of static analyzes. The concept of collecting semantics is further developed
in Chapter 8.

The fact that (A [A] € P) & (8°[A] € P) may suggest that the concept of collecting semantics
is of poor interest. However, x € S & {x} C S is the basic idea for abstracting set theory into
order/lattice theory [1]. It will later allows us to use order theory (which has the equivalent of € but
not of €), see Chapter 10 (Posets, lattices, and complete lattices).

Similarly, the collecting semantics of boolean expressions is

SC[[B]] = {%[[Bﬂ} € p((V—-2Z)—-B)

Again the collecting semantics 8 [E] of expressions E is just a particular case of property of expres-
sions i.e. the property {E' € £ | S[E'] € S[E]} i.e. all expressions E’ that have the same semantics
as E.

3.11 Proving semantic properties of expressions by structural induction

Semantic properties can be proved by structural induction on expressions. For basic cases the proof
is 8°[1] € Pand 8[x] € P. Assuming §°[A;] € P and $°[A,]] € P, we prove S°[A; - A,] € P
and 8°[A; <A,] € P. Assuming 8“[B,] € Pand 8[[B,] < P, we prove that for $“[B,nandB,] < P.
By structural induction, we conclude that £ € {E € £ | 8[E] < P}ie VE € £ . 8°[E] C P.

Exercise 3.12. Prove by structural induction on expressions that
S[1] = {pe(V-o2Z) 1}

SIx] = {pe(V—12Z) - p(x)}
Sa-n] = fpe(V=2) - filp) - folp) | f € STIA] A fr € ST[A]}
S[A <A)] = {pe(V->2Z) - filp) < folp) | fr € ST[A A fr € $7[A,]}
$°[BynandB,] = {pe(V—=>2Z)m fi(p)T folp) | f € S°[B] A f, € $°[B,]} o
Exercise 3.13. Continuing Exercise 3.12, prove that $“[x - x] = {p € (V - Z) — 0}. m

Program proof methods are further studied in Chapters 22 () and 23 (Abstract verification se-
mantics).

3.12 Abstract sign properties

We let P* £ {1,,<0,=0,>0,<0,+#0, >0, T.} be the set of signs where <0 is “strictly negative’, >0
is “positive or zero’, etc., =0 is “equal to zero’, #0 is “different from zero” (i.e. “strictly negative or
strictly positive”). T. (top) is “unknown sign” (i.e. tt that is “negative, zero, or positive”), L. (bottom)
is “no sign” (i.e. ff that is “neither negative, zero, nor positive”) be the abstract properties of the sign
abstract domain D, .
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Exercise 3.14. Continuing Section 3.2, provide an example of program where the sign of a variable
xis L. 0

The sign minus operation -. € P* x P* — P* defines the sign s; -, s, of x - y when x has sign
s; and y has sign s,.

S;=S | L. <0 =0 >0 <0 #0 >0 T.
s L. 1. e o e IV
<0| L. T. <0 <0 . . <0 T
=0| 1, >0 =0 <0 20 #0 <0 T
>0 L, >0 >0 T. >0 . T T
0] L, T. <0 <0 . T <0 T
#] L. T #0 T T T T T
20| L. > 20 T. 20 T. T. T
Te L T. T T T T T T

Exercise 3.15. Show that sign operator -. is imprecise for difference (-). o

Exercise 3.16. What is wrong with the int abs(int x) { return (x<0) ? -x : x; } method in
Java™? O

Exercise 3.17. Prove that the sign minus operation -, is incorrect with machine integers. o

Exercise 3.18. Design a sign operator for multiplication of mathematical integers (x). Prove that it
is exact i.e. the sign of the result is exactly known from the sign of the parameters. o

3.13 Structural sign semantics of expressions

The sign of an expression depends upon the sign of its free variables. We represent the sign of
variables by a sign environment p € ¥ — P* such that p(x) is the sign of variable x.

The sign semantics 8 *[A] f) of an arithmetic expression A is the sign of the expression value when
evaluated with variables which sign is given by the sign environment f) For example, if f)(x) =>0
and p(y) = <0 then 8*[x - y]p = >0.

The structural sign semantics $*[A] € (V — P*) — P* may be defined as follows.

S*[1]p = >0
STp = p0o
S A -Ap = (8*[A]p) -~ (S[A,]p)



MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.14 Soundness 9

To be more precise, if any of the variables has sign 1., meaning “the expression is never evaluated”
then the result is 1., meaning “no result is ever returned”. We say that signs are L.-strict and define
T to enforce it.

Tlpls 2 (3yeV.ply)=1.7 L.ss)
8[1fp = T'[pl(>0) (3.19)
S [xlp = Tlplp()

S*[A, - A]p (8*[A,]p) ~ (8*[A]p)

Exercise 3.20. Prove by structural induction on A that if 3x € V. p(x) = L. then 8*[A]p = 1.. O

3.14 Soundness

We would like to prove that the sign semantics 8*[A] of an arithmetic expression A is a weaker prop-
erty than the collecting semantics 8 “[A]. But 8*[A] € (V — P*) — P* while 8°[A] € p((V —
Z) — Z) and the concrete semantic properties in p((V — Z) — Z) are hardly comparable to the
abstract sign properties in (V — P*) — P,

The solution if to express abstract properties in (¥ — P*) — [P* as a concrete property in
©((V — Z) — Z). For that purpose we will define a concretization function j. € (V — P*) —
P*) - (p((V — Z) — Z)) mapping an abstract property to an “equivalent” concrete property.

Then the concrete semantics implies the abstract semantics up to concretization in that for all
arithmetic expressions A,

S°[A] < J.(S*[AD.

3.15 Sign concretization
We define the sign concretization function j. in several steps.

1. First we consider signs (in P*) as properties of integers (in ((Z)).

p(L) 2 @ 7:(<0) 2 {zeZ|z<0} (3.21)
1:(<0) = {z€Z|z<0} yp(zx0) = {ze€Z|z+0}

y:(=0) = {0} 1:(30) = {ze€Z|z>0}

y:(>0) = {zeZ|z>0} () = Z

2. Then we consider sign environments ﬁ € V — P* as properties of environments (in p(V —
Z)). ﬁ is the abstract property of all concrete environments p such that for all variables x, the
sign of p(x) is f)(x).

p(p) 2 fpeV - Z|VxeV. p(x) e y.(p(x))} (3.22)
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Observe that if p(x) = L, for some x € ¥ then .(p(x)) = D so Vx € V . p(x) € y.(p(x))
is false proving that )‘/i(f)) = . So the abstraction of false (& € @(V — Z)) is any abstract
environment ;i) with at least one variable x such that ﬁ(x) =1..

3. Finally the concretization of abstract properties P € (V — P*) — P* is the concrete property
7.(P) € ©((V = Z) — Z) defined as

7.P) 2 (8e(V-Z)—>Z|VpeV - Pt Ypeyp(p). Sp) € y.(P(p))} (3.23)
i.e. A has abstract property P, that is A [A] € 7.(P), if and only if for all environments p with

signs p, the value o [A] p of arithmetic expression A has sign P(p).

Exercise 3.24. Assume that y(pos) = {z € Z | z > 0} and y(neg) = {z € Z | z < 0} as in Exer-
cise 3.2. Provide a sound definition of the rule of signs for multiplication x with this interpretation
of the rule of sign. |

Exercise 3.25 (A posteriori soundness). Prove that for all A € 4, $°[A] <€ y.(S*[A]). m

3.16 Sign lattice

Sign properties P* £ {y.(s) | s € P*} of integers can be partially ordered by C (i.e. implication)
as represented by the Hasse diagram below where the nodes are the elements of P* and there is a
bottom-up arrow from P € P* to P’ € P* when P ¢ P’ andno Q € P* suchthat P ¢ Q ¢ P'. So
P ¢ Qif and only if there is a path from P to Q in the Hasse diagram.

The abstract signs P* are an isomorphic representation of P* as shown on the right, where the
isomorphism is y, € P* — P*.

Z T
PN /1IN
{z|z<0} {z |z # 0} {z|z=0} <0 #0 =0
e DXX] XX
{z |z <0} {0} {z | z> 0} <0 =0 >0
7 NVZ
%] Ly

Therefore, the abstract sign properties are partially ordered by C. defined by s C. s’ if and only if
y:(s) S p:(s').

Exercise 3.26. Specify algorithmically the inclusion C. on P* (mathematically defined above as
s C. s"ifand only if y.(s) € y.(s")). ]
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Exercise 3.27. Prove that -. is increasing in each of its parameters i.e. if s; C. s’; thens; - s, C.
s’ —syands, C. ', thens; s, C. s, ~s', sothatifs; C. s'; and s, C. s/, thens; —.s, C. s’y —.5/5.
m

3.17 Sign abstraction, formally
3.17.1 Abstraction of sign properties

An integer property like 2N + 1 (odd naturals) can be over-approximated in P* by sign properties
{ze€eZ|z>04L{ze€Z ]|z 3> 0},andZ. The best over-approximation of 2N + 1 in P* is
{z € Z | z > 0} since it is sound (in that 2N + 1 € {z € Z | z > 0}) and the most precise/strongest
(inthat{z e Z |z>0}c{zeZ|z20} < Z).
More generally, the best over-approximation of any integer property P € ((Z) in P* is given by
the abstraction function
a(P) =

N
Q
=
l

(3.28)

N
—_
N
N
N
(=}
=

)
AN
[}

S

—_
(=}
——
on)
|
o

{z|z>0}72>0
{z1z2<0}72<0
{z|z+0}2+0
{z|z=0}7220

2= ~Ta ~ s -Bila - Bs - B~
N 1N 1NN

00 o e e == = = —

e

a.(P) is the best over-approximation of P € ©(Z) in P* since

* P C y.(a.(P)) i.e. a.(P) is an over-approximation/sound abstraction of P;
+ ifP e P*and P ¢ yi(l_J) then «.(P) C. P ie. a.(P) is more precise than any other over-
approximation/sound abstraction of P.

Exercise 3.29. Provethats, —. s, = a.({x — y | x € y.(s) A y € p.(s)}). O

Exercise 3.30. Define the finite join L, on P* such that L, {s; | i € A} £ a.((U{y.(s;) | i € A}). Prove
thatsL. s’ = {a | a € {<0,=0,>0} A(a C. sVa C. s')}. Specify the join Ll. on P* algorithmically. o

3.17.2 Abstraction of environment properties
The best abstraction of an environment property P € p(V — Z) is

a(P) 2 xeV e allp(x) | peP)) (331)

i.e. for each variable x it is the sign of the set of values p(x) in all environments p satisfying P.
Observe that 6.(P) 2 i, £ x€V — 1, while iff)(x) = 1, then )'/i(/i)) =Jsod e p(V - Z)
has several possible abstractions in P* but L, is the pointwise C,-smallest of them.
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3.17.3 Abstraction of semantic properties

The best abstraction of a semantic property P € p((V — Z) — Z) is
wP) 2 peV P o a.((8(p)| 8 ePApen(p) (3.32)

i.e. given a sign environment ﬁ o'zi(P)ﬁ is the sign of the possible results 8§ (p) of the semantics
8 € P with property P for all environments p with sign p.

3.18 Characteristic property of abstraction/concretization
The abstraction/concretization functions (a., y.) are closely related in that for all P € ©@(Z) and
P € P*, they satisfy

oa.(P)C. P & PcCy.(P)

Proof By definition (3.21) of . and (3.28) of «., we observe that

*  y.isincreasing i.e.if s C. s’ then y.(s) € y.(s');

* a, isincreasing i.e. if P € P’ then a.(P) C. a.(P'); (3.33)

* ifo.(P) = sthen P C y.(s) so y. ° a. is extensive i.e. P C y. ° a.(P); (3.34)

* by case analysis, if P = y.(s) then a.(P) = s so «. ° y. is the identity hence reductive (3.35)
i.e. o, ° p.(s) C. ssince L, is reflexive.

It follows that

a.(P)c. P
=Y. a.(P) Sy (P) {y- is increasing and def. function composition -§
=>PCy (P) {y: ° . is extensive and C transitive§
= a.(P) C. ot © Y (ﬁ) { . is increasing and def. function composition §
= a.(P)C, P {a. ° y. is reductive and def. function composition -§ o

Similar results hold for {(d., y.), and (&., J.), see Exercise 3.37.

3.19 Galois connection

The abstraction/concretization functions {(a., y.) satisfy VP € @(Z) . VP € P* . oci(P)VE1 Pe
Pc yt(ﬁ), which is the definition of a Galois connection, which we write (©(Z), <) ai (P,
C.). )
More generally,
Yy = _
Definition 3.36 (Galois connection) a Galois connection (P, C) ‘% (P, C) is such that the

concrete domain (P, C) and the abstract domain (P, T) are partial orders, « € P — P is the
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abstraction function, y € P — P is the concretization function, and VP € P . VP € P . a(P) €
Po PCyP). a)

Exercise 3.37. Prove that (p(V — Z), <) ‘—_—_V:_, (V - P*, L), and (p((V — Z) — Z),

+

) = ((V - P*) - P*, &), o
o+

3.20 Calculational design of the sign semantics of expressions

The soundness requirement in Section 3.15 is that VA € A . 8°[A] <€ .(8*[A]). By the Galois
connection of Exercise 3.37, this is equivalent to ¢.(S“[A]) £. 8*[A]. Therefore the sign semantics
is a sign abstraction of the collecting semantics. It follows that we can design 8*[A] by calculus,
calculating &. (8 “[A]) using L. -over-approximation to avoid all computations made in the concrete
domain.

*  We first consider the case when Ix € V . ﬁ(x) = 1. so that )'/i(ﬁ) = 0.

— &.(S°[ADp

= a.({8(p) | 8 € S[A] Ap € .(p)}) {def. (3.32) of &, §
= a.({A[A](p) | p € y:(p)}) (def. (3.11) of 8°[A]§
= a.(D) (3x € V. p(x) = L. so that y.(p) = @
= 1, {def. (3.28) of a..§
= 8*[alp

{in accordance with (3.19) such that, by Exercise 3.20, Ix € V . f)(x) = 1. implies
S*[ALp = 1.3

* Then we consider the case when Vx € V . f)(x) # L. so that yi(ﬁ) # . We proceed by
structural induction on A.

— For the basic case of a constant 1, we just apply the definitions.

a(8°[1]p
= a.({8(p) | 8 € 8°[1] Ap € yu(p)}) {def. (3.32) of &. §
= a.({(A[1](p) | p € y:(P)}) {def. (3.11) of 8[1] §
= a.({1}) {y-(p) is not empty and def. (3.4) of A[1]§
= >0 {def. (3.28) of a..§

2 §*[1]p {in accordance with (3.19) when Vy € V . p(y) # L. §
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For the basic case of a variable x, we apply the definitions and then simplify.

6.(8[x])p

a.({S(p) | 8 € S°[x] Apep.(p)}) {def. (3.32) of &, §
a.({A[x[(p) | p € y:(p)}) {def. (3.11) of €[]
a:({p(x) | p € y:(p)}) {def. (3.4) of A [x] §
a:({p(x) | Yy € V. p(y) € y:(p(y))}) {def. (3.22) of y.§
a.({p(x) | p(x) € y:(p())})

{since y.(p(y)) is not empty so for y # x, p(y) can be chosen arbitrarily to satisfy
P(Y) € 1.(p(y))§

a:({x | x € y(p(x))}) Uetting x = p(x)§
oci(yi(f)(x))) {since S = {x | z € S} for any set S§
p(x) {by (3.35), a, ° ¥, is the identityS
Si[[x]}f) {in accordance with (3.19) when Vy € V. fJ(y) # 1.5

For the inductive case of A; - A,, we assume, by structural induction hypothesis, that

. (S°[A]) € 8*[A;] and &.(S°[A,]) E. S*[A,]
&(STA, - A])p

a.({8(p) | 8 € S°[A, - A, ] Ap € 1(p)}) {def. (3.32) of &, §
a.({A[A - A]() | pey(p)}) {def. (3.11) of S[A, - A,]§
a. ({A[A](p) - A[A](p) | p € 1. (P)}) (def. (3.4) of o §
a.(lx—ylx e {d[a]) | p' € (P} Ay e {d[A](p") | p" € p(p)}}

Ufp)—glp) lpeREcix—ylxe{f(p)|p eRIAye{g(p”)|p" € R}}and
«. is increasing by (3.33).

This over-approximation allows for A; and A, to be evaluated in the concrete
with different environments p’ and p” with the same sign of variables but possibly
different values of variables. This accounts for the fact that the rule of signs does not
take relationships between values of variables into account. For example the sign of
x - x is not =0 in general, see Exercise 3.15.§

a.(fx -y | x € y(a. (AP | p € 1u(PID A y €yl ({H[A](p) | p € - (PID})

Ux-ylxePAyeQlc{x-y|xe€p(a(P)) Ay € y(a(Q))} since y. ° a. is
extensive by (3.34) and «. is increasing by (3.33).
This over-approximation allows for the evaluation of the sign to be performed
in the abstract with -, instead of the concrete. §

a.({A[A](p) | p € yu(P)D) — . {A[A,](p) | p € - (p)D)
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(s1 = sy =o.({x =y | x € y.(s)) A y € .(s,)}) by Exercise 3.29§
= a.({8(p) | 8 € S°[AJAp € (PN~ a.({S(p) | 8 € S[A,]Ap € :(p)}) {def. (3.11)
of 8§
= & (SC[A]p — @ (S [A])p {def. (3.32) of . §
= & (S°[A]p — @ (S [A])p {def. (3.32) of . §
C. (8*[Alp) = ($*[A]p)
{induction hypothesis and -, is increasing in both parameters by Exercise 3.27§

+

2 8 [A -A]p {in accordance with (3.19) when Vy € V. f)(y) #1.5 o

3.21 Calculational design of abstract interpretations
This concludes our formal design of the rule of signs for arithmetic expressions.

* We first define the semantics & [A] of arithmetic expressions A in (3.4);

* The strongest property of the semantics of arithmetic expressions A is their collecting semantics
8C[A] in (3.11);

* Among the semantic properties p((V — Z) — Z) of arithmetic expressions, we select a
subset of properties of interest i.e. the sign properties and choose a computer representation,
as defined by the abstraction function d&. in (3.32), which is the lower adjoint of the Galois
connection (2?2);

+ The rule of sign $*[A] is then formally derived by calculational design in Section 3.20 by over-
approximating the best abstraction é.(8“[A]]) of the collecting semantics S[A].

It follows that 8$*[A] is sound by construction.

3.22 Conclusion

We have defined the semantics of expressions, their properties, a proof method, and a sign analysis.
Instead of designing the rule of sign empirically and then proving its soundness (as proposed in
Exercise 3.25), we used the soundness requirement as a guideline for designing the abstract sign
semantics by calculus.
This sign analysis discovers an abstract property of an arithmetic expression by computing in the
abstract only. This may involve some loss of precision, which was the case for the sign analysis.
The sign semantics is finite so it is an easily implementable static analysis (see Exercise 5.11)
whereas exhaustive case analysis would not scale up (see Exercise 3.42).

3.23 Exercises
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Exercise 3.38 (Parity). Design the parity analysis of expressions E € [£. Show that the parity

analysis is correct with machine integers. o
Exercise 3.39 (Constancy analysis). Design the T
analysis of expressions E € £ using the oppo- // | \\

. . : 1 0 1
site constancy properties such that y(1) = &,
V(i) = (i} i € Z, and (T) = Z [9], SN l e

Exercise 3.40 (Typing). Extend the semantics of expressions with the real constant 1.0 and a
generic minus operation with implicit conversion from nat to int to real where p(nat) 2 N,
p(int) 2 Z, and y(real) 2 R. Design a type analysis for these extended expressions [11]. o

Exercise 3.41. Define the cartesian set transformer P[A] of an arithmetic expression A to be

P[A] € (V —p(Z) — p(Z)

P[A] P {d[A]p|p ey (P)}.
For example if P(x) = {0, 1} and P(y) = {-1,0} then P[x-y]P ={0, 1,2} and P[x-x]P ={-1,0, 1}.
Prove that
Plap = {1}
P[x|P £ P(x)
P[A, -AJP 2 {x—y|xeP[A]PAyeP[A]P}
Pla, <AJP 2 {x<y|xeP[A]PAyeP[A]P}

P[B, nand B,|P {xTylxeP[B]PAyeP[B,]P} ]

Exercise 3.42 (Model checking). Implement the cartesian property transformer of Exercise 3.41 in
the language of your choice. In order to prove that x -y = 0 when x = y, check that P[x - y]P = {0}

for all P such that P(x) = {i} and P(y) = {i},i € 2 — 1 where p = 2,3,...,32 is the bit size of
integers. Observe the state explosion problem [5]. o

3.24 Answers to selected exercises

Answer of exercise 3.1. g and more generally Z, z € Z is undefined (computer scientists would

say the computation has a “runtime error”). o

Answer of exercise 3.2. 0 is pos, —1 is neg, the sign of 0 x —1 = 0 is pos, in contradiction with the
rule pos X neg = neg. o

Answer of exercise 3.3.
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vars[1l]] = @
vars[x] 2 {x}
vars[A, - A,] 2 vars[A,] U vars[A,]
vars[A; <A, 2 vars[A,] Uvars[A,]

vars[B; nand B, ] vars[[B,] U vars[B,] i

Answer of exercise 3.6. In OCaml [10], we have

# type aexpr = Num of int | Minus of aexpr * aexpr;;
# type bexpr = Lt of aexpr * aexpr | Nand of bexpr * bexpr;;

# let rec eval_aexpr a = match a with
| Num i -> 1
| Minus (al,a2) -> (eval_aexpr al) - (eval_aexpr a2)
let rec eval_bexpr b = match b with
| Lt (al,a2) -> (eval_aexpr al) < (eval_aexpr a2)
| Nand (b1,b2) -> not((eval_bexpr bl) && (eval_bexpr b2));;

# eval_bexpr (Lt ((Minus (Num 1, Num 2)), (Minus (Num 0@, Num 2))));;
- : bool = false m]

Answer of exercise 3.7. For all environments p, 1 - 1]p = 0. If A [A]p = n then A A - ((1 -

1)-1)]p=n+land A[(1-1)-A] =-n. o
Answer of exercise 3.14. The loop bodyin x = 0; while (0) { x = x+1 } isnever executed
to the set of possible values of x in this loop body is empty so its sign is L.. o
Answer of exercise 3.15. Consider 42 — 42 = 0. The sign is (>0) -. (>0) = T. not =0. O

Answer of exercise 3.20. This is true for A = 1 and A = x by definition of J*[p]. Assume, by
structural induction that this is true for A; and A,. Then 8*[A; - A,]p = (S*[A,]p) - (8*[A,]p)
=1, - 1. = L, by induction hypothesis and def. of -.. o

Answer of exercise 3.29. We can use the soundness requirement as a definition of s; —.s, £ a. ({x—y |
x € y.(s;) A y € y.(s,)}) to design -, by calculus. We have to consider all possible cases for s; and
s,. We show three cases T. -, L. = 1., <0 -, 20 =<0,and 20 -, 20 = T..

—a.({x - Yy | x € Yt(Tr) Ny € Yi(lr)})
=a.(x-ylxeZnryed}) {def. y.§
= a.(F) = L. {def. a.§

—o.({x -yl xep(<0)Ayey.(>0)})
=a(fx—ylx<0Ayz0}) (def. y.§
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=a.({x|x<0}) = <0 {def. o §

—a.(fx -yl x€p(20)Ay € y.(20)})
=a(fx-ylx=20Ay=0}) {def. y.§

=a.(Z) = T {def. a.§
The calculations can be formally certified by a proof verifier [3, 8].

One can also consider all cases s € P* for s, -. s, for given s, s, when needed, using a theorem
prover to make the proof that {x — y | x € y.(s;) A y € y.(s;)} € y.(s), and returning T. when the
proof fails (e.g. times out). Among all possible answers s for which the theorem prover could make
the proof, the C.-minimal one is chosen, if any. Otherwise, an arbitrary C.-minimal one has to be
selected. This is called predicate abstraction [7].

o

Answer of exercise 3.37. Forall P € p(V — Z) and p € ¥V — P*, we have

&.(P) . p

& Vx € V. &, (P)x C, p(x) { pointwise def. of . §
eVxeV.a(p(x) | peP}) L. p(x) {def. (3.31) of & §
SVxe V. {p(x) | p € P} Cp(p(x) Up@), ©) == (P*, £.)S
SVxeV.¥peP. p(x) € p.(p(x)  ldef €S
oVpeP.VxeV.p(x) e p.(p(x) {def. V§
oPcipeV >Z|VxeV.px)ey(px) {def. C§
& P Cy.(p)

{ def. (3.22) of y., proving {p(V — Z), <) y_<—i, (V - P*, )
o+

Forall P € p((V — Z) — Z) and P € (V — P*) — P*, we have

&, (P)C, P
e VpeV - P @ (P)pC. P(p) { pointwise def. of . §
eVpeV - Pt a.({8(p) | 8 e PAp e y.(p)}) C. P(p) {def. (3.32) of & §

+

eVpeV P {8(p)| 8 ePApe.(p)<y.(P(p)
Up(@), ©) = (P*, )5

eVpeV - P* V8 eP.Vpe.(p). Sp) € y.(P(p)) {def. C§
©V8 eP.YpeV - Pt . Vpe.(p). Sp) e y.(P(p) {def. V§
©V8eP.8 €j.(P) {def. € and (3.23) of . §

& P Cy.(P)
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{def. <, proving (((V — Z) — Z), <) == ((V — P*) - P*, £.).§ 0

Answer of exercise 3.42. The model checking time is exponential in the bit size of integers.

$ cat CartesianTransformer.py
import time

import matplotlib.pyplot as pyplot
from sets dimport *

# i dinteger

# ’x’ variables

# e 1= (CINT’, 1) |
# (’MINUS’, el, e2)

CVAR?, ’x?) |

maxp = 32
natural = Set(range(0, 2 ** maxp))
def eval (e, P):
if e[0] INT’:
return Set([e[1]])
if e[0] == ’VAR’:
return P(e[1])
if e[0] == ’MINUS’:
P1 = eval(e[1], P)
P2 = eval(e[2], P)
res = []
for x in P1:
for y in P2:
res + [x - y]
return Set(res)
handle_error()

res =

expr = (’MINUS’,
y’))

(’VAR’, ’x’), (’VAR’,

def makeP(i):
def P(x):
if x == ”x”:
return Set([i])
-if X == ”y”:
return Set([i])
return Set([0])
return P

x =[]

’

y =[]

result = Set([])

for p in range (2, maxp):
start_time = time.time()
for i in range (0, ((2 ** p) - 1)):

P = makeP(i)

result = result | eval (expr, P)

finish_time = time.time()

x = x + [p]
t = (finish_time - start_time)
y =y + [t]

print p, result, t, ”seconds”
pyplot.plot(x,y)
pyplot.xlabel(’p?’)
pyplot.ylabel(’time(2xxp-1)"’)
pyplot.savefig(’CartesianTransformer.png
’)
$ /usr/bin/python CartesianTransformer.
Py
2 Set([0]) 0.000694036483765 seconds
3 Set([0]) 0.000127077102661 seconds..

25 Set([0]) 262.113693953 seconds
26 Set([0]) 537.459581137 seconds
27 Set([0]) 1062.62982702 seconds
$

1200

1000

800

600

time(2*p-1)

400

200
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