VMCAI 2019 Winter School

Abstract Interpretation

Semantics, Verification, and Analysis

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Friday, 01/11/2019, 09:00 — 12:30

% “Abstract Interpretation, Semantics, Verification, and Analysis” —1/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

mailto:pcousot@cs.nyu.edu
http://cs.nyu.edu/~pcousot

Content

1. Semantics (45 mn)
2. Abstraction (45 mn)
break (30mn)
3. Verification and proofs (45 mn)

4. Analysis (45 mn)
= Numerical abstraction: see the VMCAI invited talk by Sylvie Putot (Ecole
polytechnique, France) on “Zonotopic abstract domains for numerical program
analysis”
» Symbolic abstraction: dependency analysis

% “Abstract Interpretation, Semantics, Verification, and Analysis” -2/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/

Semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 3/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Syntax

% “Abstract Interpretation, Semantics, Verification, and Analysis” —4/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Context-free syntax of expressions

XY, ... € V variables (¥ not empty)
A e A == 1] x| A-A arithmetic expressions
B € B A, <A, | B, nandB, boolean expressions
E € E ::= A|B expressions

% “Abstract Interpretation, Semantics, Verification, and Analysis” —5/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Context-free syntax of program statements

S = statement S € $
X =A; assignment
I skip
| 4df (B) S conditional
| 4f (B) SelseS
| while (B) S iteration
| break ; iteration break
| {si3} compound statement
ST ::= SL S| € statement list
P ::= Sl program P € P

% “Abstract Interpretation, Semantics, Verification, and Analysis” —-6/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program labels

= To designate program points of program components, not part of the language
= Labels are unique

= at[s] label at entry of statement S

= after[s] label after exit of statement S

= escape[S] is it possible to break out of the statement S?

= break-to[[S] where to break (exit label of enclosing loop)

= in[s] labels in statement S (excluding after[S] and break-to[S])

= labs[s] £ in[[s] U {after[S]}

= labx[s] = labs[S] U (escape[S] ? {break-to[S]} ¢ &)

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 7/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Axiomatic definition of program labelling

= We never define labels, just the properties they must satisfy

= Example s=4if (B) S, else Sy

in[s] = at[s] uin[s,] Uin[s/]
at[s] ¢ in[s,] uin[s]
in[sf nin[s;] =@

after[s,] = after[s/] = after[s]]

% “Abstract Interpretation, Semantics, Verification, and Analysis” —8/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix trace semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —9/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Trace of a hand computation
Hand computation of
(1-1)-1 < (1-1)

partial trace
0-1)< read from o
- finite trace

O 0O 0 TS T 0 o

L | T T I T B
ST
I\ —
NI

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” -10/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix trace

= A prefix trace is a finite observation of the program execution from entry

= A trace is a finite sequence of labels separated by actions (no memory state)

= |abels ¢: next action to be executed
= actions a;: records the computation done by a program step

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —-11/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of prefix trace

= default initialization to 0

6 x=x+1; (44)
whilet (tt) {
G x=x+1;
if & (x> 2) & break ;}¢;¢

x=x+1=1 t X=x+1=2 (x> 2) t
o ¢ ¢,) € ¢, € (61)
= = = = (x> 2 = =
— x=x+1=1 ¢, t ¢ XxX=x+1=2 ¢, () ¢ t ¢ Xx=x+1=3
X >2 break skip
e4 eS E6 7

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —12/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Values of variables

= Go back in the past to look for the last recorded assigned value (or 0 at
initialization)

pimt X2EZY gy 2y (6.2)
p(rt ——t)x = p(nt) otherwise
p)x = 0

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 13/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix trace semantics

= Given a trace 7, arriving at[s],
the prefix trace semantics 8*[S] of S specifies

the trace 7, of the execution of S from at[S] with initial values defined by 7,

T, T
. at[s] ———

€ 8*[s](myat[s])

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —14/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural rule-based defini-
tion of the prefix trace semantics

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 15/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics at a statement

Prefix trace at a statement S

(6.7)

at[[s] € 8 *[s] (,at[s])

A prefix continuation of the traces 7m;at[S] arriving at a program, statement or
statement list S can be reduced to the program point at[S] at this program,
statement or statement list S.

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —-16/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Semantics of arithmetic expressions

= An environment p € Ev where Ev =2 V — Z is a function p mapping a variable x to
its value p(x) in the set Z of all mathematical integers.

= Semantics of arithmetic expressions:

d1]p 2 1 (3.4)
Ao = p(x)
da -alp = da]p-d[alp

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 17/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an assignment statement

Prefix traces of an assignment statement S ::=¢ x = A ;
v=oA[A]p(rt)

¢ X=A=U after[[s] € ;9‘*[[5]](710

A prefix finite trace of an assignment ¢ x = E ; continuing some trace 7t is ¢ followed
by the event x = v where v is the last value of x previously assigned to x on 7t
(otherwise initialized to 0) and finishing at the label after[S] after the assignment.

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —-18/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of a conditional statement

Prefix traces of a conditional statement S ::=1ift (B) S,

RB[B]p(m,¢) = ff

= (6.14)
t — after[[s] € 8 *[s](,¢)
Blelp(mt) =tt, 7, € 8*[s,](m,t = at[s,])

] B I (6.15)
¢ — at[s,] ~ 7, € 8 *[s](m;0)

~ is trace concatenation

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —19/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an empty statement list

Prefix traces of an empty statement list S1 ::= €

. _ (6.11)
at[s1] € 8§ *[s1](mat[s1])

= A prefix/maximal trace 7 of the empty statement list € continuing some trace is
reduced to the program label at[S1] at that empty statement.
= This case is redundant and already covered by (6.7).

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —20/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of a statement list

Prefix traces of a statement list S1 ::=SU' S

. mE€ S*[sU](x,) (6.9)
m, € 8 *[s1(n)) '

. me 8*[sV](my), 75 € 8*[s](m, - 7,) (6.10)
Ty = T3 Eg*[[s-t]](ﬂﬂ |

A prefix trace of SU' S continuing an initial trace 7; can be a prefix trace of SU or a
finite maximal trace of S’ followed by a prefix trace of S.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —21/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an iteration statement

Prefix traces of an iteration statement S ::= whilet (B) S,

. _ (6.20)
te 8 [s](mt)

_ et € 8*[s](m0), B[B]p(m tmyt) = ff (6.21)

e, ¢ IO after[s] € 8 *[s](r,¢)

eyt € 8*[s](m,0), B[B]p(r,tn,t) = tt,

. T3 € §*[[Sb]](7r1€7r28 L, at[s,]) (6.22)
e, B, at[s,] ~ 75 € S* [s](m,0)

This is a forward, left recursive definition where »n + 1 iterations are n iterations
followed by one more iteration.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —22/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an iteration statement

Prefix traces of an iteration statement S ::= while ¢ (B) S,

. _ (6.20)
te 8*[s](m,0)

 mte[8 IslmY |, Blelptmtmt) = f (6.21)

e, —®, after[s] €| 8 *[s](,¢)

tryt €| 8 [s)(m)|, B[B]p(mtm,?) = t,

] 75 € 8 *[[8,] (ry 71,8 2 at[s,]) (6.22)

oyt 2 at[s,] - 7, €| 8 *[s](m,0)

The definition is structural (depends on the already defined semantics of
sub-components) and recursive (depends on itself) — might not be well-defined.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —23/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of a break statement

Prefix traces of a break statement S ::= ¢ break ;

- break (6'25)

t 2225, break-to[[S] € & *[s](r?)

A prefix finite trace of a break ¢ break ; continuing some initial trace 7t is the trace
¢ followed by the break ; event and ending at the break label break-to[S] (which is
the exit label of the closest enclosing iteration loop or else the program exit).

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —24/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural fixpoint definition
of the prefix trace semantics

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —25/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of fixpoints x such that f(x) = x

fx) gfp f
f(x1)=aiz |fp f
flxo) = x0
= m
L., f f

increasing function f non-increasing function f
= As shown by Alfred Tarski, an increasing function on a complete lattice has at least

one fixpoint and has a least one.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 26/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Tarski fixpoint theorem

Theorem (13.5, Tarski fixpoint theorem) An increasing function f € L—>L on
a complete lattice (L, C, L, T, 1, U) has a least fixpoint Ifp" f =[{x € L | f(x) C x}.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —27/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Tarski iterative fixpoint theorem

Theorem (13.14, Tarski iterative fixpoint)

= Let f € P—5P be an increasing function on a poset (P, C, L) with infimum L.

» Define the iterates of f to be the sequence f° = 1 and ™' = f(f") forn e N.

= Assume that the least upper bound | [{f" | n € N} exists and f(|{f" | n €
ND =LH{f(f™") IneN}

= Then f has a least fixpoint Ifp" f = | [{f" | n € N}.

| Q.

PG povipaprs) 1Y
e LAt

f? f?

f 5
Ry T foo

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —28/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint prefix trace semantics of an assignment statement

Fixpoint prefix trace semantics of an assignment statement S ::=¢ x = E ;

S*[s](nt) = {thufe 2X2E=Y, after[s] | v = €[E]p(n)}

= Example of basic case

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —29/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint prefix trace semantics of a statement list

Prefix traces of a statement list S1 ::= S S

S*[s(r,) = S*[sV](x,) U (15.2)
{11y~ 15 | 71y € SF[SU](m,) A7t € 8 *[S](my = 71,)}

= S*[sl] contains the finite maximal traces of 8 *[sU]

= Example of inductive case (8 *[s1] defined in terms of 8 *[s1'] and & *[s] with
S < sl and S < S1 where < is the strict component relation)

4 “Abstract Interpretation, Semantics, Verification, and Analysis” -30/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint prefix trace semantics of an iteration

Prefix traces of an iteration statement S ::= whilet (B) S,
IfpS F*[whilet (B) S,] (15.3)

S*[whilet (B) S,
F*whilet (B) S,[(X)(m,¢) %) when ¢ #¢
(a)

{t}

>

I3

F*[whilet (B) s,](X)(m,¢)

li li _|(B) li i li
U {e'm,t — after[s] | ¢m, € X(m,¥) A
BB]p(m tmyt) = AL =t} (b)
U {e'm,v LN at[s,] = 75 | t'm,t € X(m,t) A BB p(m,t'm,t) = tt
(c)

N1ty € 8*[Sy](m t'm, B, at[s,)) A¥ = ¢}

—31/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

4 “Abstract Interpretation, Semantics, Verification, and Analysis”

= Example of inductive fixpoint case
= inductive: 8*[whilet (B) S,] defined in terms of §*[s,] with
s, <whilet (B) S,
= fixpoint: §*[whilet (B) S,] recursively defined in terms of itself (n + 1
iterations are 1 iteration plus n iterations)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 32/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Maximal trace semantics

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —33/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Maximal trace semantics, informally

= The maximal trace semantics $*[s] = $[s] U 8®°[s] is derived from the prefix
trace semantics 8§ *[s] by

= keeping the longest finite traces $*[s], and
= passing to the limit $°°[S] of prefix-closed traces for infinite traces.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —34/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Finite maximal trace semantics

I3

{r,t € 8*[s](m,at[s]) | ¢ = after[s]}
16

= §T[s](mat[s])

. S*[s](m,®) when ¢ # at[[s]

s 87*[s](rr,at[S]) is the set of maximal finite traces at[S]m,after[S] of S continuing
the trace 7, at[S] and reaching after[s].

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —35/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefixes of a trace

€, €;
= If 1=t —— ...t — ...¢, is a finite trace then its prefix m[0..p] at pis
= 7 when p2=n

€ €
n) —

j
o —— 4 when0< p<n.

€, €;
= If 7=t —— ...t — ... is an infinite trace then its prefix m[0..p] at p is
e ¢
6 —s .G —s .8

- tp.

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 36/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Limit of prefix traces

= The limit lim 7" of a set of traces 7T is the set of infinite traces which prefixes can
be extended to a trace in 7.

Iim7 =2 {meT®|VneN.3Ip2n.n[0.p]eT}.

» Let S be an iteration. (m, ') € lim 8§ *[S] where 7’ is infinite if and only if,
whenever we take a prefix n'[0..n] of 7/, it is a possible finite observation of the
execution of S and so belongs to the prefix trace semantics (7, 7'[0..n]) € $*[s].

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 37/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Infinite maximal trace semantics

8®[s] = lm(8*[s])

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —38/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Memory abstraction

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —39/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Memory abstraction

= Abstraction from traces 7 € T* to environments p € Ev 2 ¥V — V mapping variables
x € V to their value p(x) € V

v o) = p(m)
where
pimt ZZEZY oy 2y (6.2)
p(mt ——= t)x = p(nt) otherwise
p)x = 0

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —40/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Properties

4 “Abstract Interpretation, Semantics, Verification, and Analysis”

—41/228 -

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Formal property
= A property is the set of elements that satisfy this property.

= Examples:
» {2k + 1|k € N} is the property “to be an odd natural
» {2k | k € Z} is the property “to be an even integer”

= Formally:

= € is a set of entities

= A property of these entities is an element of p(€)

= Examples:
» O is false (ff)
» G is true (it)
» ec P, Pecp(€) means “e has property P"
= P C P'isimplication = (P is stronger that P', P' is weaker that P)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —42/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program property

= Syntactic point of view: a program property is the set of all programs which have
this property (e.g. Rice theorem)

= Semantic point of view: : a program property is the set of all semantic of programs
which have this property.

= By [program] property, we mean the semantic point of view.

= A program semantics is a set of traces (in @(T")) so a program property is a set of
sets of traces (in p(p(T)))!

Lsometimes called “hyperproperties”
¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —43/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The complete (boolean) lattice of formal properties

<p(®)a <, Q) (g) U, N, _‘>
©(C€) properties of entities belonging to €

= C implication
& false
¢ true

= U disjonction, or

= N conjunction, and
= - negation, =P £ G\ P

(the definition of “complete lattice” is forthcoming)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” — 44/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Posets and complete lattices

= A poset (P, C) is a set equipped with a binary relation C which is (forall
x, 9,z € P)
= reflexive: x E x
» antisymmetric.: XE yAyCx=x=y
= transitive: xC yAyCz=>xCz

= A subset S € p(P) has a least upper bound (denoted US) if and only if

= |UISeP
= VxeS.xCUS
m VxeS.xCu=>USCu

= A complete lattice is a poset (P, C) in which any subset S € @(P) has a lub/join
uS (not only the finite ones).

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” — 45/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —46/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics
= The strongest semantic property of program P

STl = (S°[PI)- (8.5)

= Program P has property P € p(p(T™*)) is
= 8§*[P] € P, or equivalently
» {S*[P]} € P ie. Pisimplied by the collecting semantics of program P.

= So we can use implication € (=) instead of € (with no direct equivalent for
predicates in logic).

= Program verification {8 *[P]} < P is undecidable (Rice theorem)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” — 47/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on semantics

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” — 48/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |

Cousot, Patrick (2002). “Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation”. Theor. Comput. Sci. 277.1-2, pp. 47-103 (5, 10,
3, 16).

Cousot, Patrick and Radhia Cousot (1979). “Constructive Versions of Tarski's Fixed
Point Theorems". Pacific Journal of Mathematics 81.1, pp. 43-57 (7, 5, 3).

— (1992). “Inductive Definitions, Semantics and Abstract Interpretation™. In: POPL.
ACM Press, pp. 83-94 (5, 10).

— (1995). “Compositional and Inductive Semantic Definitions in Fixpoint, Equational,
Constraint, Closure-condition, Rule-based and Game-Theoretic Form”. In: CAV.

Vol. 939. Lecture Notes in Computer Science. Springer, pp. 293-308 (10, 29).

— (2009). “Bi-inductive structural semantics”. /nf. Comput. 207.2, pp. 258-283 (5, 10,
3, 8).

Plotkin, Gordon D. (2004). “A structural approach to operational semantics”. J. Log.
Algebr. Program. 60-61, pp. 17-139 (10).

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —49/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The End of Part 1

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —50/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —51/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction

= We formalize the abstraction and approximation of program properties

= We show how a structural rule-based/fixpoint abstract semantics can be derived
from the collecting semantics by calculational design.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —52/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Informal introduction to abstraction

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —53/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)

= Consider a subset 4 € p(€) of properties of interest (A4, C)

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)
= Encode these properties of interest in an abstract domain (A, C)

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

Let be (p(C€),) be properties of entities (so called the concrete domain)

Consider a subset 4 € p(€) of properties of interest (A4, C)

Encode these properties of interest in an abstract domain (A, C)

The decoding function y € A — 4 is called the concretization function

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

= So any concrete property must be over-approximated by a abstract property in
A =y(A)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)
= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

= So any concrete property must be over-approximated by a abstract property in
A =y(A)

= |f the abstract proof succeeds, it is valid in the concrete (soundness)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally

= Let be (p(C€), <) be properties of entities (so called the concrete domain)

= Consider a subset 4 € p(€) of properties of interest (A4, C)

= Encode these properties of interest in an abstract domain (A, C)

= The decoding function y € A — 4 is called the concretization function

= Make proofs using abstract properties only

= So any concrete property must be over-approximated by a abstract property in
A =y(A)

= |f the abstract proof succeeds, it is valid in the concrete (soundness)

= |f the abstract proof fails, you missed some property in @(€) \ 4 which is essential
in the concrete proof (incompleteness)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —54/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Brahmagupta

Brahmagupta (born c. 598, died after 665) was an Indian mathematician and
astronomer;

Invented the rule of signs (including to compute with zero);

We explain his rule of sign as an abstract interpretation;

Probably the very first example of abstract interpretation.

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —55/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

https://en.wikipedia.org/wiki/Brahmagupta

Structural collecting semantics

= Semantics

d[p] e (Vo2Z)>Z
dfi]p 21
dx]p = p(x)

dla -np = da]p-dA[A]p

» Collecting semantics
SC[A] € p((V - Z) - Z)
S ={Ape -1}
Sx|={Ape(V - Z) - p(x)}
S[Aa -A]=Ape(V=>2Z)- fip) - £i(p) | fi € ST[ADN L, € ST[A L}

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —56/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstraction

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 57/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign property (of an individual variable)

Z
{z|z<0}4z¢o}\{z|z>0}
ee XX
{z|z<0}\{0}/{z|z>0}
%)
Example of Hasse diagram.
¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —58/228 —

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Encoding of sign properties (of an individual variable)

/I\

\I/

Concretization function:

pe(ls) = O 1:(<0) = {z]z<0}
y:(<0) = {z|z<0} y:(#0) = {z|z#+0}
y:(=0) = {0} 1.(20) £ {z|zz>0}
y:(>0) = {z|z>0} y:(T.) = Z

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —59/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Encoding of sign properties (of an individual variable)
C is the partial order in P*

/I\

\X X\

\I/

Abstraction function:

¢ “Abstract Interpretation, Semantics, Verification, and Analysis”

o, (P)

a

| | is the least upper bound in P*

e.g. | [{<0,#0}

=T, [|g=1.

[1is the greatest lower bound in P*
eg. [{<0,#0} =<0, [|F =T

N
Q
F

o

N
—_
N
N
N
(=}
==

)
N
S

o

N
—_—
2
o)
I
(e}

{z]z<0} %<0
{z|z+0} 7% +0
{zlz=20}7%2=20

a-Bia clls cBls v Bl v Il Il v
N
N
I
Vv
2
=)
VvV
o

00 /e e e e e e

el
=N N N

—60/228 —

(3.28)

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connection

= The pair (., y.) of functions satisfies a.(P) C Q & P < y.(Q)

a.(P)EQ
S a.(P)C #0 {in case Q = #0, other cases are similar§
& a.(P) € {1, <0,#0,>0} (def. §
©Pc@VPC{z|z<0vVPc{z|z>0VvPcC{z]|z+0} {def. a.§
o Pciz|z+0} (def. c§
& P € y.(#0) (def. y.§
© Pcy.(Q) {case Q = #0§

= This is the definition of a Galois connection

= We write (0(Z), <) =— (P*, ©)
= This will be further generalized.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —61/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstract semantics

S[A] € (V- P*) - P*
S[i]Pp = >0
S[x]P £ P(x)
S[A - AJP = S[A P - S[A,] P}
Xy Y
1, <0 =0 >0 <0 #0 =20 T
T O O (U IR I IR Y
<0|L, T. <0 <0 7. T. <0 T
=0|1l, >0 =0 <0 20 #0 <0 T
X >0 L, >0 >0 T. >0 T. T T
0L >0 <0 #. T T <0 T
|1l . #0 T T T T T
20 (L. >0 20 . 20 . T T
Tl T T T T T T T

¢ “Abstract Interpretation, Semantics, Verification, and Analysis”

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of the rule of signs

>O T+ <0

>

o.({x—y|x€p.(>0) Ay € y.(<0)}
= a.({x-y|x>0Ay<0})
=a({x-ylx>0A-y=>0})

C aw(fx-ylx-y>0}

= a.({z |z >0})

= >0

Same calculus for all other cases (can be automated with a theorem prover, so called
predicate abstraction).

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —63/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstract semantics (revisited)

= |f a variable y has sign L., then y.(1.) = & so the expression is not evaluated hence
returns no value

s Define T*[P]s 2 (Jy € V.P(y) = L. ? L. 3s) to force returning L. if a variable has
abstract value 1.

= The following sign abstract semantics is more precise:

S*[1[P = T*[P](>0) (3.19)
S*[x][p = T*[PI(P(x))
S [A - AJP = (8*[A]P) ~ (8*[A]P)

= |t follows that Ix € V. P(x) = L. implies $*[A]P = L..

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —64/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Soundness

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —65/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign concretization

= Sign
puo(Lly) =2 O y:(€0) = {zeZ]|z<0} (3.21)
y:(<0) = {z€Z|z<0} y.(#0) = {z€Z|z#0}
p(=0) = {0} p(0) 2 {zeZ|z30)
y:(>0) = {ze€Z|z>0} y:(T) = Z
= Sign environment
7:(p) = {peV—>Z|VxeV.px) e y(p(x)} (3.22)

= Sign abstract property

7.(P) 2 {8e(V—-2Z)—Z|VpeV —>P*.Vpep.(p). S(p) €y(P(p)} (3.23)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 66/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstraction

= Value property
a(P) =

Q
=)
=

(3.28)
|z<0}‘-’<0

} =0

z|z>0}7>0

z|z<0}%?<0

z|z+0}7?+0

z|z=07? 20

acBilavBla B B - B Il
= 1N N N 1N 1N N N

{z
{0
{
{
{
{

00 e e e e ==

i

= Environment property
a.(P) = AxeVea.({p(x)|peP}) (3.31)

= Semantics property

@(P) = ApeV > P -a.({S(p)| 8 € PApep(p)} (3.32)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 67/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of environment property abstraction
= The property of environments such that x is equal to 1:
{peV-2Z]|p(x)=1}
= Sign abstraction:
wllpeV—2Z|px)=1)
= AyeVea({ply) lpel{peV = Z|p(x)=1}})
= AyeV:(y=x7%a.({1}) sa.(Z))
= AyeV-(y=x2>0:T.)
= Sign concretization:
peAyeVe(y=x72>0:sT.))
2 {peV-oZ|VzeV.p(z)ep.(AyeV(y=x7%>0:T.)(2)}
={peV—>2Z]|p(x) >0}

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 68/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connections

= Value to sign "
(), <) = (P*,)
= Value environment to sign environment
@V = 2),) == (V> P*, &)
= Semantic to sign abstract semantic property
@V > 2) = 2), ©) == ((V > P*) —» P*, &)

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 69/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Soundness of the abstract sign semantics

The abstract sign semantics is an abstraction of the collecting property

8[A] < 7.(8*[A])
o @W(S[A) & SA]

IM: 1N

Precision loss: if the sign of x is <0 then the sign of x - x is T. not =0

The absolute value is abstracted away

= No precision loss for multiplication x

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —70/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of the sign semantics

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 71/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Case when Ix € V. p(x) = L, so that y,(p) = &

— a.(8°[A]p

= a.({S(p) | 8 € S [A] Ap € 1(P)D) {def. (3.32) of d.§
= a.((A[A)(p) | p € 12(B)) (def. (3.11) of 8[A]§
= a.(9D) {Ix € V. p(x) = L. so that y.(p) = &
= 1. {def. (3.28) of a.§
: STAlp

{in accordance with (3.19) such that 3x € V. p(x) = L. implies $*[A]p = L..§

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —72/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Homework: Case of a variable x

. (S[x])p
— w(S(p) | 8 e 8] Ap (P {def. (3.32) of @ §
= a.({[x](p) | p € -(P)}) (def. (3.11) of $°[x]§
= a.(fp(x) | p € 9:(P)}) (def. (3.4) of A[x]§
= a.({p(x) | Yy € V. p(y) € y:(p(y))}) (def. (3.22) of y.§

= a.({p(x) | p(x) € y.(p(x))})
{since y.(p(y)) is not empty so for y # x, p(y) can be chosen arbitrarily to
satisfy p(y) € y:(p(y))§

= (x| x € (PO {letting x = p(x)}
= a.(y:(p(x))) {since S = {x | z € S} for any set S§
= p(x) {by (3.35), a. ° y. is the identity§
2 8*[x]p {in accordance with (3.19) when Vy € V. p(y) # L.§

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —73/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Other cases

» similar for &.(8°[1])p
= by structural induction for &.(S°[A; - A,])
= See the course notes in the appendix.

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 74/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Chapter 11

Galois Connections and Abstraction

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 75/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connections

= Given posets (C, C) (the concrete domain) and (4, <) (the abstract domain), the
pair {(a, y) of functions & € C — A (the lower adjoint or abstraction) and y € 4 — C
(the upper-adjoint or concretization) is a Galois connection (GC) if and only if

VPeC.VPeA.a(P)<xP e PLCyP) (11.1)
which we write

(€. 5) == (4, %) .

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 76/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example: homomorphic/partition abstraction

Let Cand Abesets, heC— A
o, (S) = {h(e) | e € S}
Yu(S) = {e € S | h(e) € S}

= (p(C), €) == (p(A), ©)
Proof
o,(8) S
& {h(e)|eeS}cS (def. a;,§
& VeeS. hle)eS (def. <§
o Scie|he) €S} (def. <§
& Scy,S) (def. y,5 O

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 77/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Duality in order theory

= The properties derived for C, L, T, LI, max, M, min, etc. are valid for the dual 3, T,
1, M, min, U, max, etc.

= [ntuition:

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —78/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dual of a Galois connection

Y
= The dual of a Galois connection (C, C) ? (4, X) is the Galois connection (4,

==)

Proof (C, C) “"% 4, <)

S ax)ye xCyy) {def. Galois connection§

a(x) =y e x23y(y) {dual statement§
sy Ex e y<alx) (inverse order x J y & y C x§
o ypx)Cy e x<ay) {(dummy variable renaming§
s (4, %) % (C, C) {def. Galois connection§ o

= Dualization of a statement involving Galois connections consists in exchanging the
adjoints

= |f an adjoint has a property, its adjoint has the dual property

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 79/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of dualization
Lemma 1 If {(C, C) # (A4, %) then « is increasing. O
Proof Assume PC P'. By a(P') < a(P') we have P' C y(a(P)) so P C y(a(P")) by
transitivity hence a(P) C a(P") by definition of a GC, proving that « is increasing. o
Lemma 2 If (C, C) # (4, %) then y is increasing. O

Proof By duality (increasing is self-dual so the dual of "« is increasing” is “y is
increasing”). m

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 80/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

.) y
= |n a Galois connection {C, C) _)T (4, <) we haveacpea=a

Example of dualization

Proof homework For all x € C and y € 4,

— ax) < alx)
= x C p(a(x))
= a(x) < a(y(a(x)))
— () Ey(y)
= aly(y) <y
= a(p(a(x))) < alx)
— a(x) = a(y(a(x)))

= Thedualisyea-y=y.

4 “Abstract Interpretation, Semantics, Verification, and Analysis”

- 81/228 -

{ reflexivity §

Ldef. GC§

{« increasing§

{ reflexivity §

Ldef. GC§

{for y = a(x)§
(antisymmetry§ O

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Equivalent definition of Galois connections

= (G, L) _)‘—%— (4, <) ifand only if x € C = 4 and y € 4 — C satisfy
(1) «is increasing;
(2) y is increasing;
(3) Vx e C.xCy-alx) (ie. y-«ais extensive)
(4) VyeA.a-y(y) <y (ie. a-yis reductive) m

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 82/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

« preserves existing lubs

Lemma 3 If (C, C) ;L__, (4, <) then « preserves lubs that may exist in Ci.e.
let U be the partially defined lub for C in C and Y be the partially defined lub
for < in 4. Let S € (C) be any subset of C. If | |S exists in C then the upper
bound Y{a(e) | e € S} exists in C and is equal to «(| |S). O

Proof By existence and definition of the lub | |S, we have Ve € S.eC | |S so

ale) < (| |S) since « is increasing. It follows that «(| |S) is an upper bound of
{a(e) | e € S}. Let u be any upper bound of this set {«(e) | e € S} so that

Ve € S . a(e) < u. By definition of a GC, Ve € S. e C y(u). So y(u) is an upper
bound of S. By existence and definition of the lub | |S, | |S C y(u) so (| |S) < u
proving that «(| |S), which exists since « is a total function, is the lub of

{a(e) | e € S} denoted Y{ale) | e € S}. O

= By duality y preserves existing meets.
¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —83/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

lub-preserving «

Lemma 4 If « preserves existing lubs and y(y) = | [{x € C | a(x) < y} is well-
defined then (€, £) == (4, <). o

Proof xC y(y)

= xC |_|{x' €Clalx) <y} (def. y§
= ax) < a(l_l{x' €C|alx) =< §2)) {« preserves existing lubs so is increasing§
= a(x) < Y{oc(x,) | x e CAax) < §%)) {« preserves existing lubs}
= alx)<y

(since y is an upper bound of {a(x) | a(x) < y} greater than or equal to the

Iub’Y{oc(x) II(x(x) <y} , ’
=>x<|_|{x €Clalx) =y} (since x € {x € C|a(x) =<y}
= x<p(y) (def. y§ O

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —84/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Uniqueness of adjoints

Lemma 5 In a Galois connection one adjoint uniquely determines the other. o

Proof Observe that VP € C . a(P) = N{P | «(P) < P} so, by definition of a GC,
a(P)=n{P | PC y(P)} i.e. y uniquely determines a. Dually & uniquely determines y
since VP € 4. y(P) = U{P | «(P) < P}. O

= This lemma is useful in situations where only one adjoint is defined explicitly since
then the other is also uniquely determined.

= Note: for given concrete and abstract partial orders

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —85/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois retraction (surjection /insertion)

= I (C, ©) == (4, <) then
= « is surjective, if and only if
= y is injective, if and only if
» VPeA.a-yP)=P.
= This is denoted (C, C) % (4, <) and called a Galois retraction (Galois
surjection, insertion, etc.).

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 86/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 87/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sound abstraction

= Assume (C, C) # 4, %)

» We say that P € 4 is a sound abstraction of P € C if and only if
PCy(P)

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” — 88/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of sound abstractions

T

p(Lly) 2 @
7,) = <o/ \>0 <0 2z lz2<0)
co e - p:(20) 2 {z]z>0}
\\l// () £ Z

property | sound abstractions

{1,42} >0 and T,

{o} <0, =0, and T,

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —89/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Better abstraction

Y
= Assume (C, C) = (4, <)
= Let P,,P, € 4 be sound abstractions of the concrete property P € C.

= We say that P, is better/more precise/stronger/less abstract than P, if and only if
P, <P,

4 “Abstract Interpretation, Semantics, Verification, and Analysis” -90/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Best abstraction

y
= Assume (C, C) b— (4, <)

» Then a(P) is the best/most precise/strongest/least abstract property which is a
sound abstraction of the concrete property P.

Proof

= «a(P) is a sound abstraction of P since P C y(«(P)).
» a(P) is the least sound abstraction of P since a(P) = [[{P | P € y(P)}. O

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —-91/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of best abstractions

Y+ (Ls)

_ / \ 7:(<0)
:(>0)

\ / y:(T2)

N N
WV /A
o O
—_— =

—~
+
Irn
H+
~
Il
> 1> > >

NT T Q

property | sound abstractions | best abstraction

{1,42} >0 and T. =0

{o} <0, =0, and T, none

= There is no Galois connection between {(p(Z), <) and (P*, C*).

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —-92/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Combination of Galois connections

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —03/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Composition of Galois connections

y
= The composition of Galois connections (P, C) _Tl— (P,, <) and (P,,
1
2 2

14 . . . ney
<) ____,‘—2 (P5, <) is the Galois connection (P, C) :: (P, Q).
(24 (22291

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —94/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connections pairs
Y.
= Let (G, £1) = (A, <)) and (G, B5) == (4, <,);

= (C;%xC,, E) # (A4, x A4,, <), where
woa({x, p)) = {a;(x), x,(»)),
=YX,) = (11(X), 2(»)), and

= L and < are componentwise.

4 “Abstract Interpretation, Semantics, Verification, and Analysis” —95/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Higher-order Galois connections

Y2
Let (Cy, C;) &= (A4, %1) and (C,, ;) <—72— (4, <,);

» (C;—Cy 5y) —>E: (4,45 4,, %,), where
a=Afraye fey,, and
Y=Afeyofoa.

f

a,— 1 .4

(I, ()

c,—~ ¢,

4 “Abstract Interpretation, Semantics, Verification, and Analysis” - 96/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Conclusion on abstraction by Galois connections

= We can represent abstract program properties by posets and establish the
correspondence with the concrete properties using a Galois connection.

= The concrete order structure is preserved in the abstract and inversely.

= Otherwise stated concrete and abstract implications coincide up to the Galois
connection.

= So proofs in the abstract domain (4, <) using the abstract implication/order < is
valid in the concrete (C, C) for C, up to this GC.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 97/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on abstraction

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —08/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |

Bertrane, Julien, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival (2015). “Static Analysis and Verification of
Aerospace Software by Abstract Interpretation”. Foundations and Trends in
Programming Languages 2.2-3, pp. 71-190.

Blanchet, Bruno, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival (2003). “A static analyzer for large
safety-critical software”. In: PLDI. ACM, pp. 196-207.

Cousot, Patrick (Mar. 1978). "Méthodes itératives de construction et d'approximation
de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de
programmes (in French)". These d'Etat és sciences mathématiques. Grenoble,
France: Université de Grenoble Alpes.

— (1981). “Semantic foundations of program analysis”. In: S.S. Muchnick and
N.D. Jones, eds. Program Flow Analysis: Theory and Applications. Englewood Cliffs,
New Jersey, UsA: Prentice-Hall, Inc. Chap. 10, pp. 303-342.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —99/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |l

Cousot, Patrick (1997). "Types as Abstract Interpretations”. In: POPL. ACM Press,
pp. 316-331.

— (1999). “The Calculational Design of a Generic Abstract Interpreter”. In: M. Broy
and R. Steinbriiggen, eds. Calculational System Design. NATO ASI Series F. 10S
Press, Amsterdam.

— (2000). “Partial Completeness of Abstract Fixpoint Checking”. In: SARA. Vol. 1864.
Lecture Notes in Computer Science. Springer, pp. 1-25.

— (2015). "Abstracting Induction by Extrapolation and Interpolation”. In: VMCAI
Vol. 8931. Lecture Notes in Computer Science. Springer, pp. 19-42.

Cousot, Patrick and Radhia Cousot (1976). “Static determination of dynamic
properties of programs”. In: Proceedings of the Second International Symposium on
Programming. Dunod, Paris, France, pp. 106-130.

— (1977a). “Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints". In: POPL. ACM,
pp. 238-252.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —100/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References 1l

Cousot, Patrick and Radhia Cousot (1977b). “Static Determination of Dynamic
Properties of Generalized Type Unions”. In: Language Design for Reliable Software,
pp. 77-94.

— (1977c). “Static determination of dynamic properties of recursive procedures”. In:
E.J. Neuhold, ed. IFIP Conf. on Formal Description of Programming Concepts,
St-Andrews, N.B., CA. North-Holland Pub. Co., pp. 237-277.

— (1979). “Systematic Design of Program Analysis Frameworks”. In: POPL. ACM
Press, pp. 269-282.

— (1992a). “Abstract Interpretation Frameworks”. J. Log. Comput. 2.4, pp. 511-547.

— (1992b). “Comparing the Galois Connection and Widening/Narrowing Approaches
to Abstract Interpretation”. In: PLILP. Vol. 631. Lecture Notes in Computer Science.
Springer, pp. 269-295.

— (1994). “Higher Order Abstract Interpretation (and Application to Comportment
Analysis Generalizing Strictness, Termination, Projection, and PER Analysis". In:
ICCL. IEEE Computer Society, pp. 95-112.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —101/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References IV

Cousot, Patrick and Radhia Cousot (1995). “Formal Language, Grammar and
Set-Constraint-Based Program Analysis by Abstract Interpretation”. In: FPCA.
ACM, pp. 170-181.

— (2000). “Temporal Abstract Interpretation”. In: POPL. ACM, pp. 12-25.

— (2002). “Modular Static Program Analysis”. In: CC. Vol. 2304. Lecture Notes in
Computer Science. Springer, pp. 159-178.

— (2004). “Basic Concepts of Abstract Interpretation™ In: René Jacquard, ed. Building
the Information Society. Springer, pp. 359-366.

— (2012). “An abstract interpretation framework for termination". In: POPL. ACM,
pp. 245-258.

— (2014). "A Galois connection calculus for abstract interpretation”. In: POPL. ACM,
pp. 3-4.

Cousot, Patrick, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival (2005). “The Astrée Analyzer”. In: ESOP.

Vol. 3444, Lecture Notes in Computer Science. Springer, pp. 21-30.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —102/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References V

Cousot, Patrick, Radhia Cousot, Jéréme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival (2006). “Combination of Abstractions in the
Astrée Static Analyzer”. In: ASIAN. Vol. 4435. Lecture Notes in Computer Science.
Springer, pp. 272-300.

Cousot, Patrick, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, and
Xavier Rival (2009). "Why does Astrée scale up?” Formal Methods in System
Design 35.3, pp. 229-264.

Cousot, Patrick, Roberto Giacobazzi, and Francesco Ranzato (2018). “Program
Analysis Is Harder Than Verification: A Computability Perspective”. In: CAV (2).
Vol. 10982. Lecture Notes in Computer Science. Springer, pp. 75-95.

— (Jan. 2019). “A?l: Abstract? Interpretation”. PACMPL (POPL conference) 3, article
42, DOI: 10.1145/3290355.

Cousot, Patrick and Nicolas Halbwachs (1978). “Automatic Discovery of Linear
Restraints Among Variables of a Program”. In: POPL. ACM Press, pp. 84-96.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —103/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

https://doi.org/10.1145/3290355

The End of Part 2, 30mn break

% “Abstract Interpretation, Semantics, Verification, and Analysis” —104/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Verification and proofs

% “Abstract Interpretation, Semantics, Verification, and Analysis” —105/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Verification and proofs

= We show that verification methods and program logics are (non-computable)
abstractions of the program collecting semantics.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —106/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program properties

% “Abstract Interpretation, Semantics, Verification, and Analysis” —107/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program semantic properties

= The entities are semantics of program P i.e. sets of maximal traces € = (T**)

= The properties are sets of semantics of program P i.e. sets of sets of maximal traces
0(C) = p(p(T**))?

2also called “hyperproperties”
% “Abstract Interpretation, Semantics, Verification, and Analysis” —108/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of program semantic property

P2p({reT | plmx=0)Up{reT"|p(m)x=1}) € @p(T))
= P means “all executions of P always terminate with x = 0 or all executions of P
always terminate with x = 1".

% “Abstract Interpretation, Semantics, Verification, and Analysis” —109/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of program semantic property (Cont'd)

= Assume program P has this property P so §"°[P] € P.
= Executing program P once, we know the result of all other executions.

= |f the execution terminates with x = 0 (respectively x = 1) the property P implies
that all other possible executions will always terminate with x = 0 (respectively
x =1).

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 110/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —111/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics (for maximal traces)

= The strongest semantic property of program P

SPl £ 8™} . (85)

= Program P has property P € p(p(T™*)) is
= §°[P] € P, or equivalently
» {8™°[P]} € P ie. Pisimplied by the collecting semantics of program P.

= So we can use implication € (=) instead of € (with no direct equivalent for
predicates in logic).

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 112/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Trace properties

% “Abstract Interpretation, Semantics, Verification, and Analysis” —113/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Trace properties

= By “program property” or “semantic property” most computer scientists refer to
“trace properties”

= elements G = T, traces
= trace properties p(€) = p(T)

= safety and liveness are trace properties

% “Abstract Interpretation, Semantics, Verification, and Analysis” —114/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

7

Example of trace properties

= the program trace semantics & *°[P] € p(T*®) is a trace property.

» {meT"| p(m)x =0} € p(T*®) is the trace property of “terminating with x=0".

s P={reT"|p(m)x € {0,1}} € p(T™) is the trace property of “terminating with
x=0 or x=1".

>0 —>0—>0 x—() >0 0—>0—>0x—]
P - *—>e—>0 - 0—>0—>0x—() *—>o—>e - —>o—>0x—]

*—>o—>e >0 x—() *—>o—>e 00—

*—ro—>e - 0—>0—>0x—() >0 - 0—>0—>0X—]

= Trace properties in @(T"*) are less expressive than semantic properties in
(1)

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 115/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a semantic property into a trace property

= Any semantic property P can be abstracted into a less precise trace property o' (P)

defined as
al € pp(TT™)) - @(TT) Y€ p(T™°) = p(p(TT))
a'(P) = [JP y'(P) = g(P)

e oo rex—([—r———" —reroo—sex—(e s orerex—]

e ro e e sex—() | ~—re—e-e—rex=] 0 e —ree—rex—1

ore-e—re—rex—(orere-ererex—| P T —ro-e—re—rex—(—ro—rer—ro—rox—]
p= =a'(P) =

e —————e . »

—reroosex—0 | ... oo reerex—] —rereorex—(—re—rp-a—rex—1

et evesexd DG T R GO » .

» P and P both express that program executions always terminate with a boolean
value for x.

» P is stronger since it expresses that the result is always the same while P doesn't.

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 116/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a semantic property into a trace property (Cont'd)

T
= Galois connection (p(p(T**)), <) L‘ZZ (p(T*), <)

= Proof:
a'(P)c P
s UP cP (def. o' §
o {x|3XeP.xeX}cP (def. |J§
©VXeP.VxeX.x€eP (def. c§
©VXeP.XCP (def. <§
© Pc{X|XcPh} (def. <§
& P cp(P) (def. ©f
& Pcy'(P) (def. y".§

» o is surjective (since a'({P}) = P).

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 117/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability properties

% “Abstract Interpretation, Semantics, Verification, and Analysis” —118/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability property

A relation 7(¢) between values of variables attached to each program point ¢ that holds
whenever the program point ¢ is reached during execution

2, /* x=0 */

X=x+1;
whilet (tt) /* 1<x<2 %/ {
[/* 1<x<2 %/
X=x+1;
ifl (x>2) /*x 2<x<3 %/
4 /* x=3 %/
break ;
} 1(6)2{p € Ev | Vy € V.. p(y) = 0}
& /x x=3 %/ I(®L)2I(B)2Hp e Ev | 1 < p(x) S2AVy € V\ {x}. p(y) =0}
; 7(L)2{p € Ev | 2 < p(x) S3AVy € V\ {x} . p(y) = 0}
& /x x=3 %/ 1()21(%)=1(4)={p € Ev | p(x) =3 AVy € V\ {x}. p(y) = 0}

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 119/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a trace property into a reachability property

OCU

o' (IT)

E(T*°) - (L - p(Ev)) (8.12)
At{p(met) | In' . nen' € I}

[l> m

collects at each program point ¢ of each trace the possible values of the variables at
that point.

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 120/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a trace property into a reachability property (Cont'd)

(]
= Galois connection (p(T**), c) in— (L — p(Ev)), <)

= Proof:

ol(I1) € 7
& At={p(nt) | In' . mtn' €11} £ 1 (def. a'§
& Ve . {p(nt) | In' . men’ € IT} < 1(¢) { pointwise def. £§
o Ve . {p(nt) | Imrell.In' . 7w =mntn'} C 1(¢) (def. €
o V. Vaell . Va' .7 =ntn' = p(rt) € 1(¢) {def. c§
e Vrell . Va' . Ve.m=mntn' = p(nt) € 1(¢) (def. V§
s Ilc{m|Vn . Vt.7=mntn' = p(nt) € 1(¢)} (def. c§
e I cy'(D)

by defining y'(2) 2 {7 | Va' . V¢ . T = ntn’ = p(me) € 1(¢)}.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —-121/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Hierarchy of program properties

% “Abstract Interpretation, Semantics, Verification, and Analysis” —122/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Hierarchy of program properties/semantics

S'[P] = «(S'[P]) invariance/

L — p(Ev) = o -a'(8°[P]) reachability
semantics

= 8§8"°[r] trace semantics

= a'(S[P])

P M) 8] 2 {S$*[PL,

collecting semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —123/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Chapter 16

Fixpoint abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” —124/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint abstraction

= (C is a concrete domain
f € C—>C is an increasing concrete transformer

y
(C, C) _? (4, <) is an abstraction into 4

Problem: abstract Ifp® f
= first abstract the concrete transformer f into an abstract transformer
fea—-=-2Aa
= then abstract «(Ifp" f) into Ifp™ f.
= This abstraction may be
« exact ie. a(lfp® f) = Ifp* f
= or sound but imprecise, in which case we get an overapproximation

a(Ifp f) < Ifp* f.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —125/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of fixpoint abstraction

exact fixpoint abstraction imprecise fixpoint abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 126/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Transformer abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” —127/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Transformer abstraction

= To abstract a fixpoint «(Ifp” f), we first abstract its transformer f.

Theorem (16.1, transformer abstraction) If (C, C) # (4, <) then (C—2%>
C, O) é (A—>4, <) where C and < are pointwise (i.e. f C g if and only if
VxeC. f(x)C gx), a(f) =a-fep,and p(f) =y f-a.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —128/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint over-approximation

% “Abstract Interpretation, Semantics, Verification, and Analysis” —129/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint over-approximation

= |n general abstracting the fixpoint transformer by a larger one yields a fixpoint
over-approximation.

y y y
Ifp F / ifp F / Ifp F
a(fp f)[7F o a(lfp f) = a(lfp f) .
Ifp f J g Ifp f Tl iy — ¢
L f b
a X & X L4 X
0 1 0 1 0 1
fef Vx. f(x)Ex= f(x)Cx

Vx CIfp" f. f(x) C f(x)

fixpoint over-approximation

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 130/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint over-approximation (cont’d)

Theorem (16.3, pointwise fixpoint over-approximation) Assume that (C,C,
1, T, U,) is a complete lattice, f,g € C—<>C are increasing, and f C g then
Ifp" f CIfpg.

= Also valid for cpos.

y
ifp £ /
a(ifp)7 Y
ifp f J g
£
a X

<
< >

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 131/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sound fixpoint abstraction

» An abstract fixpoint Ifp* f is a sound fixpoint abstraction of a concrete fixpoint

Ifp" f whenever a(Ifp~ f) < Ifp™ f.

Theorem (16.6, fixpoint over-approximation in a complete lattice) Assume
Y

that (C,C, 1, T, U, M) and (4, %, 0, 1, ¥, A) are complete lattices, (C, E) ___>‘—a (A4,

<), and f € C—>C is increasing. Then Ifp~ f Cy(Ifp e f - y).

fcxul
foeuf

f 2-f(f2)
=
fz V fl
fI
fo- d Frea(t)
€ ¢ o

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 132/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sound fixpoint abstraction (cont'd)

Corollary (16.8, fixpoint approximation by transformer over-approximation)
Assume that (C, C, L, T, U, M) and {4, <, 0, 1, Y, A) are complete lattices, {C,
Y — . . .=

L) == (A, <), feC—Cand f € A—+>A are increasing, and « * f -y < f.

Then Ifp° f C y(Ifp™ f).

also in a cpo

% “Abstract Interpretation, Semantics, Verification, and Analysis” —133/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Theorem (16.12, fixpoint over-approximation in a cpo) Assume that (C,C,

y
1, Uy is a cpo and (4, %, 0, A) are cpos, (C, C) % (4, %), and feC*C
is upper continuous.

Then Ifp® f Cy(Ifp = f = p).

foo+1
fe=uf

% “Abstract Interpretation, Semantics, Verification, and Analysis” —134/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Corollary (16.10, fixpoint approximation by semi-commuting trarlsformer)
Under the hypotheses of Corollary 16.8 assume instead that a - f < f - « (semi-
commutation). Then Ifp® f C y(Ifp™ f).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —135/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact fixpoint abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” —136/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact versus sound fixpoint abstraction

» A sound fixpoint abstraction «a(Ifp" f) < Ifp* f is
= exact when a(Ifp® f) = Ifp™ f. B
» |t is sound but approximate (or imprecise) when a(Ifp= f) < Ifp™ f.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —137/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact fixpoint abstraction

Theorem (16.15, exact fixpoint abstraction in a complete lattice) Assume
that (C, C, 1, T, U, M) and (4, £, 0, 1, Y, A) are complete lattices, f € C—2>C

y — _
is increasing, (C, C) ? (4, %), feA—-+Aisincreasing, and a° f = f o«

(commutation property). Then a(Ifp” f) = Ifp™ f.

fo-

% “Abstract Interpretation, Semantics, Verification, and Analysis” —138/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact fixpoint abstraction (cont'd)

Theorem (16.16, exact fixpoint abstraction in a cpo) Assume that (C, C,
1,) is acpo, f € C > C is upper continuous, (C, C) _? (4, <) is a Galois
retraction, and f € 4 — 4 satisfies the commutation property a - f = f - «.
Then f=a- f -y isincreasing and a(Ifp® f) = Ifp™ f = YN?n(oc(J_)).

ne

% “Abstract Interpretation, Semantics, Verification, and Analysis” —139/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —140/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” —141/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Assertional abstraction

post (8) Ryt 2 {p(mborr,t) | p(myts) € Ry A (18.1)
torr, ¢ € 8(mybo) AU =t}

[S 8(7‘[080)

& 4
Ty | 4! | Us)

p(mgt) € Ry plrytor;?) € post™(8) R, ¢

T = (T, &) __WV—F (Q(Ev) — L — p(Ev), <)
pos

% “Abstract Interpretation, Semantics, Verification, and Analysis” —142/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

¢

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —143/228 -

Assertional abstraction, Example

6 x=x+1; (4.4)
whilet, (tt) {

G x=x+1;
if & (x> 2) & break ;}%;¢

We assume that all variables are initialized to 0. Maximal trace semantics

a = = _'(X>2) = 2
8 = {21 X ! £, t € X 2 £y) t £ x S €y x> (61)

break skip

£ (’,7}

The reachable states are

&5

3}

post?(S)Roﬁ
LRy, = {pelkv|VyeV.p(y) =0}
6,8 {p[x<—i]|pe‘]{0/\ie[l,2]}
4 [{plx —il | peRyNiel23]}
35)36’87 {P[x<_3]|P€R0}

]

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of
the reachability semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —144/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of the reachability semantics

= by structural induction
= by calculating the exact reachability transformer from the prefix trace transformer
= by applying the exact fixpoint abstraction 16.15 for the iteration

% “Abstract Interpretation, Semantics, Verification, and Analysis” — 145/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the assignment

Reachability of an assignment statement S ::= x = A ;

(¢ =at[s] ? R, (17.10)
[

S ?[[5]] Ryt

¢ = after[s] ? assign’[x, A] R,
%)
{plx — A[Alp] | p € Ry}

—

I3

assign[x, A] R,

% “Abstract Interpretation, Semantics, Verification, and Analysis” —146/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the conditional

Reachability of a conditional statement S ::=if (B) S,
87s] Roe = (¢=at[s] ? R, (17.18)
Jeein]s,] 2 8Ts,] (test'[B]R,) ¢
] ¢ = after[s] 2 8 7[s,] (test'[B]R,,) ¢ U (test [B]R,)
s)
testj[s]]a(o 2 (peR,| B[s]p = tt}
testBlR, = (p <Ry | Blslp =)

% “Abstract Interpretation, Semantics, Verification, and Analysis” — 147/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the statement list

Reachability of a statement list S1 ::= SU S

STIsUR,t = (¢ e€labs[sU]\{at[s]} ? ST[SU]R, ¢ (17.20)
] ¢ € labs[s] 2 8 [s](S T[sU]R, at[s]) ¢
s D)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —148/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the iteration

Reachability of an iteration statement S ::= whilet (B) S,

STs| Ry ¢ = (fp° Fwhilet (B) S,] Ry) ¢ (17.14)
Fwhilet (B) S,] Ry X ¢ =

(v =2 RyUSTs,] (test[B]X(2)) ¢

¢ ein[s,]\{&} 2 87s,] (test™[B]X(2)) ¢

| ¢ = after[[s] @ test [B](X(¢)) U) 87sy] test[B]X(0)) ¢

" ebreaks-of[s,]
3)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —149/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstract domain and abstract interpreter

% “Abstract Interpretation, Semantics, Verification, and Analysis” —150/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstract domain

% “Abstract Interpretation, Semantics, Verification, and Analysis” —151/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

¢
7

The domain of properties, inclusion (i.e. logical implication), and the structural
definitions of the semantics have the following common structure.

semantics prefix trace 8* reachability ST | abstract 8%
(T =2 (L - @(Th) | p(Ev) =2 (L > p(Ev)) | PP -2 1 — PH)
domain p(Th) ©(Ev) P2
inclusion c c Co
. 3 .

abstraction 1o &p Ay

infimum @ %) 1

join U U Hie

assignment assign*[x, A] assign’[x, A] assign™[[x, A]

test test*[B] test'[B] test” [B]
test*[B] test'[B] test " [B]

3132 Ax €S+ x is the identity function on the set S.
“Abstract Interpretation, Semantics, Verification, and Analysis” —152/228 -

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Definition (19.1, Domain well-definedness) We say that a domain
D* 2 (P®, 7, 17, U”, assign”[x,A], test”[B], test™[B])

is well-defined when (P™,C™) is a poset of properties with infimum 17, the lub U™ is
well-defined for pairs of properties, and C”-increasing chains (so (P, C*) is a join-
lattice and a cpo), the assignment assign™ is well-defined in (V x £) —» P¥ P~
and the tests test” [B] and test”[B] are well-defined in B — P* - P~.

The abstract domain D™ is an algebra while the domain of abstract properties P™ is a
set. So the mathematical structures are different. However, following mathematicians

that call Z the “ring of integers” where a ring is an algebraic structure and Z is a set,
we often say, by abuse of language, that P® an abstract domain.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —153/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstract structural semantics/interpreter

% “Abstract Interpretation, Semantics, Verification, and Analysis” —154/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The semantics can be implemented as instances of a generic abstract interpreter
defined below.

» Abstract semantics of a statement list SU::= SU' S
ST[s1 Ryt 2 (¢elabs[sU]\ {at][s]} 2 8= [sU] R, ® (19.5)
| ¢ € labs[s] 2 & % [s](S ®[sU] R, at[s]) ¢
s 17)
= Abstract semantics of an empty statement list S ::= €
ST Ryt 2 (t=at[S1] 2R,z L") (19.6)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —155/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

» Abstract semantics of an assignment statement S ::= x = A

¢ =ats] ? R, (19.7)
t = after[s] 7 assign™[x,A] R,
17)

S¥[s|Rot = (
)

where assign[x, A ¢ y C y ° assign™[x, A].

% “Abstract Interpretation, Semantics, Verification, and Analysis” —156/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

= Abstract semantics of a conditional statement S ::=1if (B) S,

ST[s] Ryt = (¢=at[s] 2R, (19.9)
J¢einfs,] 2 87[s,] (test™[B] R,) ¢
| ¢ = after[s] ?
8 *[s,] (test” [B] R) ¢ U™ test” [B] R,
s 17)

where test[B] - y C y - test”[B] and test[B] - y C y - test*[B].

% “Abstract Interpretation, Semantics, Verification, and Analysis” —157/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

= Abstract semantics of an iteration statement S ::=whilet (B) S,

SE[s] R, ¥ = Ifp~ (F7[whilet (B) S,] Ry) ¥ (19.11)
Iwhitet (B) 5] € P* - (L - P¥) - (L - P%))

“lwhitee (B) S, Ry X ¢ =

(V=2 RyU" 8§7[s,] (test™[B]X(¢)) ¢

¢ ein[s,] \{e} 2 8 7[s,] (test™[B]X(¢)) ¢

[= after[s] 2 test“ [B]X®) L™ | |7 8%[sy] (test®[B]X(®) ¥
2" cbreaks-of[[s,]

F
F

s 17)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —158/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

» Abstract semantics of a break statement S ::= ¢ break ;

SE[s] Ryt = (t=at[s]?Rys L") (19.12)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —159/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof methods

% “Abstract Interpretation, Semantics, Verification, and Analysis” —160/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Invariance proof methods

= |nvariance proof methods derive from the reachability semantics
= abstraction to verification conditions — Turing/Floyd/Naur proof method
= abstraction to Hoare triples — Hoare logic
= Fixpoints:

Theorem (22.1, Fixpoint induction) Let f € L —> L be an increasing
function on a complete lattice (£, C, 1, T, M, U) and P € L.
We have Ifp® fCP o 3l e L. fU)CIAICP.

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 161/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on verification and proofs

% “Abstract Interpretation, Semantics, Verification, and Analysis” —162/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |

Alglave, Jade and Patrick Cousot (2017). “Ogre and Pythia: an invariance proof
method for weak consistency models™. In: POPL. ACM, pp. 3-18.

Cousot, Patrick (1990). “Methods and Logics for Proving Programs”. In: Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics (B). MIT
Press Cambridge, MA, USA ©1990, pp. 841-994.

— (2002). “Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation”. Theor. Comput. Sci. 277.1-2, pp. 47-103.

— (2003). “Verification by Abstract Interpretation”. In: Verification: Theory and
Practice. Vol. 2772. Lecture Notes in Computer Science. Springer, pp. 243-268.

Cousot, Patrick, Roberto Giacobazzi, and Francesco Ranzato (2018). “Program
Analysis Is Harder Than Verification: A Computability Perspective”. In: CAV (2).
Vol. 10982. Lecture Notes in Computer Science. Springer, pp. 75-95.

Floyd, Robert W. (1967). “Assigning meaning to programs”. In: J.T. Schwartz, ed.
Proc. Symp. in Applied Math. Vol. 19. Amer. Math. Soc., pp. 19-32.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —163/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |l

Hoare, C. A. R. (1978). “Some Properties of Predicate Transformers”. J. ACM 25.3,
pp. 461-480.
Naur, Peter (1966). “Proofs of algorithms by general snapshots”. BI/T 6, pp. 310-316.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —164/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The End of Part 3

% “Abstract Interpretation, Semantics, Verification, and Analysis” —165/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Symbolic abstraction:
dependency analysis

% “Abstract Interpretation, Semantics, Verification, and Analysis” — 166,228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Motivation

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 167/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency

Found in many reasonings on programs:
= Non-interference (confidentiality, integrity)
= Security, privacy
= Program slicing

= Temporal dependencies in synchronous languages (Esterelle, Lustre, Signal, ..
called causality there)

= etc.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —168/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency

The existing definitions

= are given a priori (e.g. Cheney, Ahmed, and Acar, 2011; D. E. Denning and
P. J. Denning, 1977),

= without semantics justification (except Assaf, Naumann, Signoles, Totel, and
Tronel, 2017 (“hyper-collecting semantics”), Urban and Miiller, 2018)

= are dependencies on program exit only

Our objective is to study principles, not to get a new powerful dependency analysis

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 169/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency, informally

% “Abstract Interpretation, Semantics, Verification, and Analysis” —170/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Functional dependency

= A function f(...,x,...) depends on its parameter x if and only if changing only this
parameter changes the result

Axpxy . flx,) #F fxy,.00)

= Example: f(x,y) =x—(y — y) depends on x but not on y
= Definition:

.rfrdni = {f | Elxla---’xn’xil 'f(xl""’xz 1> Xip Xig 15 -0 5 Xy):/:
S ey X X X 15 e X)) (44.1)
U U K> ni

neN, 1<isn

>

Fd

¢

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 171/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Non-interference

= Given low variables L (e.g. “public” respectively “untainted”) and high variables H
(“private/conf" respectively “tainted”)

= Non-interference (Cohen, 1977; Goguen and Meseguer, 1982, 1984; Mantel, 2003)
is defined as “if executions start with the same values of the low variables then,
upon termination, if ever, the low variables are equal (so changing initial high
variables cannot change final low variables)

= The non-interference property is therefore

Ni(L,H) = {Ilep(TxT®)|V(ny, n),(my, n')y e IN(THxTH).
(Vx € L. p(my)x = p(my)x) = (Vx € L. p(mmy = m)x = p(ry - ')x)}

Interference during the computation and non termination are not taken into
account.

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 172/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

General idea of dependency

= y depends on the initial value x, of x at ¢ if and only if changing x, changes the
future observations of y at ¢

= We consider dependency on initial values of variables

More generally, changing an abstraction of the past at ¢ changes an abstraction of
the future after ¢

% “Abstract Interpretation, Semantics, Verification, and Analysis” —173/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency is local

mLy=0;3by=x;36
= the value of y at & is the initial value y, of y at &
Changing the initial value of x does not change the value of y at & so
y does not depend on the initial value of x at ¢

= the value of y at & is 0.
Changing the initial value of x does not change the value of y at ¢ so
y does not depend on the initial value of x at ¢

= the value of y at ¢ is the initial value x; of x.
Changing the initial value of x changes the value of y at ¢ so
y depends on the initial value of x at &

= dependency upon the initial value of variables is local (may be different at different
program points).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —174/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency depends on values of variables

{if (x=0) y=x; else y=0;} ¢
= The value of y at ¢ is always 0, no dependency

{if (x=0) y=x; else y=1;} ¢
= The value of y at ¢ is
» if x, =0 then “0"
= if x5 # 0 then 1"
= y at ¢ depends on x; (unless (xo =0A Yy, =0)V(xy #0A y, =1))

= dependency of y upon the initial value x, of x depends on the initial and current
values of x and y

= this is ignored in D. E. Denning and P. J. Denning, 1977's dataflow analysis

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 175/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency depends on sequences of observations of values of variables

P, = while ¢ (0==0) x=x+1;
» One canobserve x,-x,+1-x5+2 x5+ 17 x5+ 18 ...x,+42-x,+43-... at ¢
= changing the initial value x; of x changes this observation
= x at ¢ depends upon x,

Py = x=0; while ¢ (0==0) x=x+1;
» Onecanobserve 0-1-2-...17-18-...-42-43-... at ¢
» changing the initial value x, of x does not change this observation
= x at ¢ does not depend upon x,

= We must observe the maximal sequence of values successively taken by a variable at
a program point

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 176/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Counterfactual dependency: absence of observation
int x,y; if (x=0) { y=x; ¢}

= Observation of y at ¢:
» if x, =0 then “0"

= if x, # 0 then """ (empty observations: no execution ever reaches ¢)

= Dependency if empty observations are taken into account
= No dependency if empty observations are not taken into account
= The choice is completely arbitrary!

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 177/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Counterfactual value dependency: absence of observation

int x,y,z; if (x=0) { y=x; ¢}

= Assume that empty observations are taken into account (so y depends on x,)
= QObservation of z at ¢:
» if x, =0 then "z," (initial value of z)
= if x, # 0 then “" (empty observations: no execution ever reaches t)
= Two different observations at ¢!
= Should z depends on x, at ¢?
= The choice is completely arbitrary!
= No
= Yes

= Yes if the value of z at ¢ is different from z,, (D. E. Denning and P. J. Denning,
1977)

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 178/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

¢

Timing dependency

whilet (x>0) x=x-13

Does variable y (s.t. y # x) at ¢ depends on the initial value x, of x?
= The observation of y at ¢ is y,- yy - ... - ¥, repeated x, + 1 times.
= So changing x, changes the observation of y at ¢

This is a covert/side channel (Lampson, 1973; Mulder, Eisenbarth, and Schaumont,
2018), more precisely, a timing channel (Russo, Hughes, Naumann, and Sabelfeld,
2006; Sabelfeld and Myers, 2003)

The choice of ignoring timing channel is arbitrary

Ignored in the classical definition of dependency D. E. Denning and P. J. Denning,
1977

One way of ignoring timing channels is to require that observation sequences must
differ by at least one data

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” - 179/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Counterfactual timing dependency

/* x{0,1} */ while (x I=0) ty=x;

= |f x, = 1, the infinite sequence of values of y observed at ¢ is y,-1-1---.
= |f x, =0, then the observation at ¢ is the empty sequence ».
= Does y at ¢ depends on the initial value x;, of x?

= This depends on hypotheses on observables. Is an infinite sequence of values
observable? Is the empty sequence 5 of values observable?

= This is debatable and problem-specific

= For example if a program terminates it is easy to check on program termination
that a program point is never reached. This may be considered impossible with
non-termination.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —180/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency, formally

% “Abstract Interpretation, Semantics, Verification, and Analysis” —181/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Future observations

= initialisation trace m, € T*
= (non empty) continuation trace 7 € T

» futurefy]¢(m,, m) is the sequence of values of y successively observed at program

point point ¢ in the trace 7 continuing 7, 4
futurey]e(m,,8) = p(my)y
futurey]e(m,,¢) = o
future[[y]]ﬁ(ﬂo,f L) EHT[)) P(T[O)y . future[[y]]e(n.o Ny L) e//) 3”7'[)

future[y]e(m, - ¢ 2 ¢, ¢'7)

1>

future[y]e(my, ¢’ —2 ¢'77)

= future[y]¢(m,,) is the empty sequence 3 if ¢ does not appear in 7

4this should be understood as a bi-inductive definition of P. Cousot and R. Cousot, 2009 to properly handle non-termination

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 182/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Observations

= An observation (v, w) of a variable at a program point is a pair of

= an initial value v of the variable
= the future observation w of this variable from that program point on

% “Abstract Interpretation, Semantics, Verification, and Analysis” —183/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations (v, w) and (v/, @’) (1)
(1) Counterfactual timing dependency:
ctdep({v, w), (v, 0')) = w# '
(empty observations are allowed)
(2) Timing dependency:
tdep({v, w), (V, @) 2 wtw' Aw+s3Aw #3

(empty observations are disallowed)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —184/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations (v, w) and {v/, w') (Il)

(3) Value dependency:

Vdep((Xa w>a <2’) (U,)) é EI('0()’ wla wll)v) V’ .
w=wy - v-w Aw' =wy-v' -] AV EY

(different values of the variable must be observed)

Example 6 if& (x==1) {ty=x;061}6&
y does not depend on x at &, &, and & but y depends on x at ¢ (unless y = 1 at &).
o

% “Abstract Interpretation, Semantics, Verification, and Analysis” —185/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations (v, w) and (v/, w') (llI)

(4) counterfactual value dependency:

a

cvdep({v, w), (v, ')) = vdep({v, w), V', 0')) v
(w=aAw #3)V(w+aAw =23)

(an empty observation is allowed)

Example 7 if& (x==1) {tiy=x3;8%1}84
y depends on x at & (unless y =1 at &).
Any variable depends on the initial value of x at & and ¢..]

% “Abstract Interpretation, Semantics, Verification, and Analysis” —186/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations (v, w) and (v/, w') (IV)

(5) Counterfactual multi-values dependency:

cmvdp((v, w), (v, @')) = vdep((v, w), (v, @')) Vv
(w=23AJwp,V,w) .0 =wy-v -] AV #V')V
(W' =3ANJwy,v,w; . w=wy-v-w, AV #V)

(an empty observation is allowed for variables which value has changed)

Example 8 if& (x==1) {ty=x;061}6&

No variable depends on the initial value of x at ¢ and only y at & (unless y is
initially 1).

This is D. E. Denning and P. J. Denning, 1977. m|

% “Abstract Interpretation, Semantics, Verification, and Analysis” —187/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Formal definition of dependency

Dependency property:

Dyeptx, y) = {Il € (T x T*) | Iy, my), (g, 7)) € I1.

(Vz € V\ {x}. p(my)z = p(m()z) A
dep({p(my)y, future[y]e(my, 7)), {p(ry)y, future[y]e(ry, 7))}

choose dep € {vdep, cmvdp, cvdep, tdep, ctdep} to get 5 different definitions

y depends on the initial value of x at point ¢ of program P is:

§+oo[[P]] € pdep?‘(X, y)

No necessary distinction between explicits and implicits flows as in D. E. Denning
and P. J. Denning, 1977

% “Abstract Interpretation, Semantics, Verification, and Analysis” —188/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency lattice

D

ctdep
Z)vdep

= The more differences between observed futures, the more dependencies;

= Not clear with postulated definitions (such as the hydraulic model where
dependency depends on the rules to mix colors)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —189/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Why maximal traces?

= For prefix traces, if a trace is in the semantics, all of its prefixes are also in the
semantics, which introduces artificial timing channels

% “Abstract Interpretation, Semantics, Verification, and Analysis” —190/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix traces for dependency on values

= For value dependencies, the maximal trace semantics can be replaced by the prefix
trace semantics withou problem:

Lemma S™[P] € Dy, %, ¥) © S*[P] € Dygeptix, v)

= |dem if we include empty observations (the prefixes of & *[P], are never empty, so
no possible confusion)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —191/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency abstraction

% “Abstract Interpretation, Semantics, Verification, and Analysis” —192/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of data dependency

= The abstraction of a semantic property S € p(p(T* x T**)) into a data dependency
property a’**(S) € L — (V x V) is:

(S = (% ¥) |5 € Diygeptx,)}

= This is a Galois connection:

vdep

Lemma 10 (p(p(T* x T*®)), <) y; (L — p(VxV), 2% where the
vdep
concretization of a dependency property D € L — g(V x V) is:

p@) 2 (1 () Duepti ¥)

el (x,y)eD®)

(the more semantics, the less dependencies)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —193/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Value dependency static analysis

% “Abstract Interpretation, Semantics, Verification, and Analysis” —194/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential value dependency

= o P({8FP[s]}) = a*?({8*[S]}) is not computable (Rice theorem)

= We design an over-approximation:

Potential value dependency semantics 8 1 :

“vdep({8+mﬂs]]}) & §;dep[[s]]

= The abstraction of D. E. Denning and P. J. Denning, 1977 is purely syntactic (in
dataflow analysis style)

= We do slightly better, by taking values into account, in a very simple way

% “Abstract Interpretation, Semantics, Verification, and Analysis” —195/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example
ifé (x==1) {& y=z ;(’,2 };83

= we have the potential value dependency:

I3 ‘ [N £ 15 [
§!dep[[sﬂ ¢ {6 x4y v, ysy)s Hzoy) {6 %), (%, v), (Y, v)s
(z, z)} (z, z)} (z,)} (z, y),(z, 2)}

= this is an over-approximation since e.g. z flows to y at ¢ only when x =1 at &.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —196/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design

» By calculus (in principle, can be checked with Coq like Jourdan, Laporte, Blazy,
Leroy, and Pichardie, 2015)

= By structural induction on the program syntax

= By fixpoint over-approximation for iterations:

Theorem (over-approximation of fixpoints) If (C, C, 1, T, U, M) and (4, %, 0,
y
1, v, A) are complete lattices, (C, C) % (4, <) is a Galois connection,

feC—Cand f € A4 are increasing and « » f £ f » (semi-commutation)
then Ifp~ f C p(Ifp™ f).

= Finite domain, no widening needed

% “Abstract Interpretation, Semantics, Verification, and Analysis” - 197/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of assignment S ::= x = A

Suwfs]e = (t=at[s] 2 1y
[¢ = after[s] 2 {{y, x) | y € $[A]} U
{{y, v) |y # x}
3 D)

§99[A] 2 {y|Tpebv.veV.d[alp# A[Alply — v}
vars[A]

N

Example:
= after x =y -y ;, x depends on y.
= after x =y j x =y - x 3, x depends on the initial values of x and y
= To be more precise we would have to preserve information on the values of

variables (eg. x = y)
% “Abstract Interpretation, Semantics, Verification, and Analysis” —198/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof (don't read @) |

The cases ¢ = at[[S] was handled in (44.38) and ¢ ¢ labx[S] in (44.39). It remains the case
¢ = after[s].

adP({8*[s]}) after[s]
= a"*P({8*[s]}) after[s] (Lemma 44.25§
= {{x, y) | 87[s] € D, (after[S])(x’, y)} {def. (44.29) of a***® and def. c§
= {(x, y) | Imy, my), (g, w)) € 87[S] . Vz € V\ {X'} . p(my)z = p(mly)z A vdep({p(m,)y,

futurely] (after[S])(7ry, 711)), {p(rry)y, future[y](after[S]) (g, w))N)}

{def. € and (44.20) of D, ¢(x’, y)§

— (X y) | 3,), 7y € {(mat]s], at[s] ———llPTED oqers]y | mat[s] e

T} . Vz e V\ {X'}. p(my)z = p(rl)z A vdep({p(m,)y, future[y](after[S])(my, 7,)), {p(rr})y,
futurey] (after[S]) (g, 7))}

{def. (15.1) of the assignment prefix finite trace semantics§

% “Abstract Interpretation, Semantics, Verification, and Analysis” —199/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof (don't read @) I

x=d mya x=o ThHa
= ((xs y) | Smat[s], at[s] LD, apiers]), (rpat]s], atfs] ——mrt

after[s]) . VvVz e VvV \ {X} . pmat[s)z = pGpat[s])z A
vdep({p(y)y, future[y] (after[S])(rgat[s], at[s] ——adfT D | o rer[sT)), (p(rh)y,
futurey] (after[s])(myat[s], at[s] o pmaED after[S])))} {def. €§

— Wy Fmat[s], at[s] — ——tPIPmED o gers]), Grat]s],
x=oA mha
at[s] LIPSy . (vz € \(x') . plmgat[s])z = p(rhat[s])z)Avdep({p(ry)y,
x=9 [A] p(myat[s]) x=d [A] p(ryat[s])
P TP after[s])y))}

p(myat[[s] ———— after[s])y), (p(mp)y, p(myat[s]
{def. (44.14) of the future future[y]§

x=o [A] p(myat[s])
_—

= {{x, y) | Amyat[s], at[9] after[s]), (mpat[s],
at[s] “SIPTED | colsly . vz € W\ X} . pOmat[shz = pOrhat[s])z) A

x=od [A]p(myat[s])
((p(moat[s])y # p(myat[s]y) v (p(mpat[s])y = p(myat[s]y A p(myat[s] ———

x=d [A] p(mpat[s])
% “Abstract Ifttergrltal]\on 3:”’)&@0%5 \CE(IOV‘I and Analysis" afterﬂ%(lp)zgéf © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof (don't read o) Il

{(44.18) so that vdep({x, a-b), (y, c-d)) if andonly if (1) a#cor (2)a=cAb+d.§

x=d [A] p(mat[s])

= {(x, y) | A(myat[s], at[s] _ after[s]), (mpat[s],

at[s] ——HIPTED | ocorls]y . (V2 € W\ X} . plrgat[s])z = pGrhat[s])z) A ((y =

XYV (y = x A d[A]plryat[s]) + A[A]pGrypat[s])))} {def. (6.2) of p§

c {1y =x)V(y=xA3p,v. d[A]p# d[A]p[x" —v])} (11)

Uletting p = p(myat[s]) and v = p(mpat[S])(x’) so that Vz € ¥V \ {x'} . p(m,at[s])z =
p(rpat[s])z implies that p(ryat[s]) = p[x’ « v].§

= {(x, xy | x" £ x}U{(x, x) | Fp,v. A[A]p + A[A]p[x" — Vv]} {case analysis§

= (!, XY | X # U, x) | X! € 8er]a]}

{by defining the functional dependency of an expression A as ?;de"[[A]] 2 {x'" | Jp,v.
dA[A]p # A[A]p[x’ — v]} in (44.41)§ O

% “Abstract Interpretation, Semantics, Verification, and Analysis” —201/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of the conditional S ::=4f (B) S,
Sy[s]e = (t=at[s] 7Ty (a)
I ¢ cin[s,] 2 S:[s,] ¢] nondet(s, B) (b)
| ¢ = after[s] ?
§§dep [s,] after[s,] 1 nondet(B, B) (c.1)
U Ty] nondet(—B, —B) (c.2)
U nondet(—B, -B) x mod[s,] (c.3)
s) (d)

det(B,,B,) <
nondet(B;,B,) 2 V\det(B;,B,)

mod[x = E 3]

mod[;] £ mod[e] 2 mod[break ;]

mod[while (B) S] = mod[if (B) S]

mod[if (B) S, else S|

mod[{ Sl }]

mod[st s]

x| Vp,p". (BB]p A B[B,]p") = (p(x) = p'(x))}

{1 L T L 1L L 114

determinacy
non-determinacy
{x} modified variables
%]
mod(s]
mod[s,] U mod[s/]
mod[s1]
mod[S1] U mod[s]

% “Abstract Interpretation, Semantics, Verification, and Analysis”

—202/228 -

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

= On entry (a), variables in ¥ only depend upon themselves as specified by the
identity relation Ty,.

= The reasoning in (b) is that if a variable y depends at ¢ on the initial value of a
variable x at at[s,], it depends in the same way on that initial value of the variable
x at at[s] since the test B has no side effect.
However, (b) also takes into account that if S, can only be reached for a unique
value of the variable x and the branch is not taken for all other values of x then the
variable y does not depend on x in S, since empty observations are disallowed by
vdep.

= (c) determines dependencies after S so compare two possible executions of that
statement. In case (c.1) both executions go through the true branch. In case (c.2)
both executions go through the false branch, while in case (c.3) the executions take
different branches.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —203/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

= In case (c.1) when the test is true tt for both executions, the executions of the true
branch S, terminate and control after S, reaches the program point after S (recall
that after[s,] = after[S]). The dependencies after S, propagate after S but only in
case of non-determinism, e.g. for variables that are not constant.

= The second case in (c.2) is for those executions for which the test B is false ff.
Variables depend on themselves at[s] and control moves to after[S] so that
dependencies are the same there, but only for variables that can reach after[s] with
different values on different executions as indicated by the restriction to
nondet(—B, —B).

= The third case in (c.3) is for pairs of executions, one through the true branch and
the other through the false branch. In that case y depends on x only if x does not
force execution to always take the same branch, meaning that x € nondet(-B, =B). If
y is not modified by the execution through S, then its value after S is always the
same as its value at[s] (since y is not modified on the false branch either). In that
case changing y at[S] would not change y after S so that, in that situation, y does
not depend on x. Therefore (c.3) requires that y € mod[s,].

% “Abstract Interpretation, Semantics, Verification, and Analysis” —204/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Note on the potential dependency semantics of the conditional
S:=1f (B) S,

= Empty observations are not taken into account
n e qif (X:Q) { y=X; El} 2,
= y does not depend on x at & neither at ¢
= y depends on x at &

= As already stated, this is different from D. E. Denning and P. J. Denning, 1977
implicitly allowing for counterfactual multi-values dependency cmvdp.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —205/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of the statement list S1 ::= S’ S

Sue[s]e 2 (¢ elabx[sU] 7 SWer[s1] ¢ (a)
| ¢ €labx[s] \ {at[s]} ?
Sus[sU] ats] 5 S [s] ¢ (b)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —206/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of the iteration S ::= whilet (B) S,

§;dep[[s]] ¢ = (Ifp° Flwhilet (B) S,]) ¢
F*whilet (B) S| X ¢ =
(v=e7
1, U (X(®) 3 (8“[s,] ¢] nondet(B, B)))
[I ¢ e In[[Sb]] ?
X(¢) 5 (8*[s,] ¢ 1 nondet(B, B))
| ¢ = after[s] ?
X(¢) U (X(¢) 3 (V x mod[s,])) U

X() g ((U ?;"e"[[sb]] B”)] nondet(B, B))

" cbreaks-of[[s,]
s D)

(d)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —207/228 -

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example

S = whilet (tt) {tiy=2z ;8% z=x; }&.

The system of equations X = F4[s](X) is

X(®) = {{v, v) [veVIu(X(e)s{{x x),{x z),{y,)}

X)) = X(%)

X&) = X(&)UX(E)s{(x x),{(z y)(z, 2)})

X&) = O

The chaotic iterations are
3 €, & ¢, 0

XO(e) %] %] (%)}
X'(v) {06)<y, y), (2, 2)} {6 x),(z, y), (2, 2)})
X2(v) {06 x), (%, 2),{y, ¥, (2, ¥), {2z, 2)} {06 x), (%, y) (%, 2),(z, y),{(z, 2)} &
X3 | {06 x5 06 ¥ (6 2),(ys ¥), (2, ¥), (2 20} {06 x), (% ¥), (%, 2),(z, ¥),(z, 2)} @
X4(e) X3(%) = X3(&) X3(%) 1%}

% “Abstract Interpretation, Semantics, Verification, and Analysis” —208/228 —

The initial value xg of x flows to x at € on iteration entry, to z after the first iteration and so to y after the first iteration
The initial value yg of y flows only to y at € on iteration entry.
The initial value zg of z flows to z at € on iteration entry and then to y after the first iteration.

© P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The potential dependency semantics is not purely structural °

= Separate analysis of statements:

Ly=x; x and y at ¢ depend on x at &.
&
Ly=y-x3; x and y at & depend on x at ¢,.
12

Dependency analysis of the statement list:

14 =X

EO z —y ’ « y at ¢ depends on x at ¢ which depends on x at & so,
1 - - ..

0 ’ by composition, y at ¢ depends on x at &.

2

Yet, y =0 at & and so y at & do not depend on x at ¢.

A purely syntactic structural definition of dependency like & [s] is necessarily
imprecise (since values of variables are not taken into account)

50ne would say compositional in denotational semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —209/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Improving precision

= To be more precise, values of variables must be taken into account

» Reduced product with a reachability analysis (for example Cortesi, Ferrara, Halder,
and Zanioli, 2018; Zanioli and Cortesi, 2011)

% “Abstract Interpretation, Semantics, Verification, and Analysis” —210/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of derived depen-
dency semantics and analyzes

% “Abstract Interpretation, Semantics, Verification, and Analysis” —211/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dye instrumented semantics

% “Abstract Interpretation, Semantics, Verification, and Analysis” —212/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Postulated definition of dependency (1)

= dye-tracer tests in hydrology: determine the possible origins of spring discharges or
resurgences by water source coloring and flow tracing

= dye instrumented semantics: decorate the initial values of variables with labels such
as color annotations and to track their diffusion and mixtures to determine
dependencies Cheney, Ahmed, and Acar, 2011.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —213/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Postulated definition of dependency (II)

= This postulated definition of dependency can be proved sound by observing that the
initial color of variables can be designated by the name of these variables and that
the color mix at point ¢ for variable y is

{x | STC[P] € Dyept{x, y)}

= Note that in the postulated instrumented semantics, the choice of dep remains
implicit as defined by the arbitrarily selected color mixing rules.

= Like all instrumented semantics Jones and Nielson, 1995, it must be semantically
justified with respect to the non-instrumented semantics, in which case the
non-instrumented semantics can be used as well to justify dependency, as we do.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —214/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Tracking analysis

% “Abstract Interpretation, Semantics, Verification, and Analysis” —215/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

= Assume the initial values of variables (more generally inputs) are partitioned into
tracked 7" and untracked ¢/ variables,

V=TulUand TNU=9

= The tracking abstraction a"(D) of a dependency property D € L — p(V x V)
attaches to each program point ¢ the set of variables y which, at that program
point ¢, depend upon the initial value of at least one tracked variable x € 7.

af(D)t = {y|3IxeT .(x, y) € D)}

= A tracking analysis is an over-approximation of the abstract tracking semantics
S7[s] 2 a*(aP{S[s]})

assigning the each program point ¢, a set $T[s]¢ € (V) of variables potentially
depending on tracked variables.

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —216/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of tracking analyses

= taint analysis in privacy/security checks Ferrara, Olivieri, and Spoto, 2018; Li,
Bissyandé, Papadakis, Rasthofer, Bartel, Octeau, Klein, and Traon, 2017 (tracked is
tainted, untracked is untainted);

= binding time analysis in offline partial evaluation Hatcliff, 1998; Jones, Sestoft, and
Sgndergaard, 1989 (tracked is dynamic, untracked is static)

= absence of interference Bowman and Ahmed, 2015; Cohen, 1977; Goguen and
Meseguer, 1982, 1984; Volpano, Irvine, and Smith, 1996 (tracked is high
(private/untrusted), untracked is low (public/trusted)).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —217/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Conclusion

% “Abstract Interpretation, Semantics, Verification, and Analysis” —218/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency is an abstract interpretation of the program semantics

= Dependency analysis is an abstract interpretation of the program semantics

= This include non-interference, “taint” analysis, etc.

= Data dependency analysis to detect parallelism in sequential codes Padua and
Wolfe, 1986 is also an abstract interpretation Tzolovski, 1997, Tzolovski, 2002,

Ch. 5.
= We have considered particular cases of dependency.

% “Abstract Interpretation, Semantics, Verification, and Analysis” —219/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

¢

Conjecture: all dependencies are abstract interpretations

The semantics is a set of computations (7, tr') (where ¢ ¢ 7).
We define an abstraction of the past 7t (the initial state in our case)

We define an abstraction of the future (the sequence of values of a variable y
observées dans ¢7’ a each point ¢ dans ¢71').

We define a difference on pasts (changing the value of only one variable in our case)
We define a difference on futures (tdep, ctdep, vdep or cvdep in our case)

Dependency is then the future abstraction depends on the past abstraction iff a

change of the past changing its abstraction change the abstraction of the future.
By varying abstractions and the difference we change the notions of dependency
(and we should be able to recover the whole literature in that way).

Good examples are Giacobazzi and Mastroeni, 2018 for non-interference and
Barthe, Grégoire, and Laporte, 2017 for the protection against side channels attacks

¢ “Abstract Interpretation, Semantics, Verification, and Analysis” —220/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on dependency

% “Abstract Interpretation, Semantics, Verification, and Analysis” —221/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |

Assaf, Mounir, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel
(2017). “Hypercollecting semantics and its application to static analysis of
information flow". In: POPL. ACM, pp. 874-887 (176).

Barthe, Gilles, Benjamin Grégoire, and Vincent Laporte (2017). “Provably secure
compilation of side-channel countermeasures”. IACR Cryptology ePrint Archive
2017, p. 1233 (227).

Bowman, William J. and Amal Ahmed (2015). “Noninterference for free". In: /CFP.
ACM, pp. 101-113 (224).

Cheney, James, Amal Ahmed, and Umut A. Acar (2011). “Provenance as dependency
analysis". Mathematical Structures in Computer Science 21.6, pp. 1301-1337 (176,
220).

Cohen, Ellis S. (1977). “Information Transmission in Computational Systems”. In:
SOSP. ACM, pp. 133-139 (179, 224).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —222/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References |l

Cortesi, Agostino, Pietro Ferrara, Raju Halder, and Matteo Zanioli (2018). “Combining
Symbolic and Numerical Domains for Information Leakage Analysis”. Trans.
Computational Science 31, pp. 98-135 (217).

Cousot, Patrick and Radhia Cousot (2009). “Bi-inductive structural semantics". /nf.
Comput. 207.2, pp. 258-283 (189).

Denning, Dorothy E. and Peter J. Denning (1977). “Certification of Programs for
Secure Information Flow". Commun. ACM 20.7, pp. 504-513 (176, 182, 185, 186,
194, 195, 202, 212).

Ferrara, Pietro, Luca Olivieri, and Fausto Spoto (June 2018). “Tailoring Taint Analysis
to GDPR". In: Privacy Technologies and Policy. 6th Annual Privacy Forum, APF
2018, Barcelona, Spain, June 13-14, 2018, Revised Selected Papers. DOI:
10.1007/978-3-030-02547-2_4 (224).

Giacobazzi, Roberto and Isabella Mastroeni (2018). “Abstract Non-Interference: A
Unifying Framework for Weakening Information-flow". ACM Trans. Priv. Secur. 21.2,
9:1-9:31 (227).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —223/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

https://doi.org/10.1007/978-3-030-02547-2_4

References 1l

Goguen, Joseph A. and José Meseguer (1982). “Security Policies and Security Models”.
In: IEEE Symposium on Security and Privacy. IEEE Computer Society, pp. 11-20 (
179, 224).

— (1984). "Unwinding and Inference Control". In: |[EEE Symposium on Security and
Privacy. IEEE Computer Society, pp. 75-87 (179, 224).

Hatcliff, John (1998). “An Introduction to Online and Offline Partial Evaluation using
a Simple Flowchart Language”. In: Partial Evaluation. Vol. 1706. Lecture Notes in
Computer Science. Springer, pp. 20-82 (224).

Jones, Neil D. and Flemming Nielson (1995). “Abstract Interpretation: a
Semantics-Based Tool for Program Analysis”. In: Samson Abramsky and
Dov M. Gabbay, eds. Handbook of Logic in Computer Science. Vol. 4, Semantic
Modelling. Oxford University Press, pp. 527-636 (221).

Jones, Neil D., Peter Sestoft, and Harald Sgndergaard (1989). “Mix: A Self-Applicable
Partial Evaluator for Experiments in Compiler Generation™. Lisp and Symbolic
Computation 2.1, pp. 9-50 (224).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —224/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References IV

Jourdan, Jacques-Henri, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie (2015). “A Formally-Verified C Static Analyzer”. In: POPL. ACM,
pp. 247-259 (204).

Lampson, Butler W. (1973). “A Note on the Confinement Problem”. Commun. ACM
16.10, pp. 613-615 (186).

Li, Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel,
Damien Octeau, Jacques Klein, and Yves Le Traon (2017). “Static analysis of
Android apps: A systematic literature review". Information & Software Technology
88, pp. 67-95 (224).

Mantel, Heiko (July 2003). “A Uniform Framework for the Formal Specification and
Verification of Information Flow Security”. Dr.-Ing. Thesis. Saarbriicken, Germany:
Fakultat | der Universitat des Saarlandes (179).

Mulder, Elke De, Thomas Eisenbarth, and Patrick Schaumont (2018). “ldentifying and
Eliminating Side-Channel Leaks in Programmable Systems”. /EEE Design & Test
35.1, pp. 74-89 (186).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —225/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References V

Padua, David A. and Michael Wolfe (1986). “Advanced Compiler Optimizations for
Supercomputers”. Commun. ACM 29.12, pp. 1184-1201 (226).

Russo, Alejandro, John Hughes, David A. Naumann, and Andrei Sabelfeld (2006).
“Closing Internal Timing Channels by Transformation”. In: ASIAN. Vol. 4435.
Lecture Notes in Computer Science. Springer, pp. 120-135 (186).

Sabelfeld, Andrei and Andrew C. Myers (2003). “Language-based information-flow
security”. |IEEE Journal on Selected Areas in Communications 21.1, pp. 5-19 (186).

Tzolovski, Stanislav (1997). “Data Dependence as Abstract Interpretations”. In: SAS.
Vol. 1302. Lecture Notes in Computer Science. Springer, p. 366 (226).

— (15 June 2002). “Raffinement d'analyses par interprétation abstraite”. These de
doctorat. Palaiseau, France: Ecole polytechnique (226).

Urban, Caterina and Peter Miiller (2018). “An Abstract Interpretation Framework for
Input Data Usage”. In: ESOP. Vol. 10801. Lecture Notes in Computer Science.
Springer, pp. 683-710 (176).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —226/228 - © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References VI

Volpano, Dennis M., Cynthia E. Irvine, and Geoffrey Smith (1996). “A Sound Type
System for Secure Flow Analysis". Journal of Computer Security 4.2/3, pp. 167-188
(224).

Zanioli, Matteo and Agostino Cortesi (2011). “Information Leakage Analysis by
Abstract Interpretation™. In: SOFSEM. Vol. 6543. Lecture Notes in Computer
Science. Springer, pp. 545-557 (217).

% “Abstract Interpretation, Semantics, Verification, and Analysis” —227/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The End, Thank you

% “Abstract Interpretation, Semantics, Verification, and Analysis” —228/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Appendix

% “Abstract Interpretation, Semantics, Verification, and Analysis” —229/228 — © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018

7:26pm

3

Syntax, semantics, properties, and

static analysis of expressions

We introduce basic concepts of abstract interpretation using arithmetic and boolean expressions.

Contents

3.1 The rule of signs

3.2 Sign analysis of iterative programs

3.3 Sign abstraction, informally

3.4 Syntax of expressions

3.5 Structural definitions

3.6 Environments

3.7 Structural semantics of expressions

3.8 Proofs by structural induction

3.9 Semantic properties of expressions

3.10 Collecting semantics of expressions

3.11 Proving semantic properties of expressions by structural induction
3.12 Abstract sign properties

3.13 Structural sign semantics of expressions

3.14 Soundness

3.15 Sign concretization

3.16 Sign lattice

3.17 Sign abstraction, formally

3.18 Characteristic property of abstraction/concretization
3.19 Galois connection

3.20 Calculational design of the sign semantics of expressions
3.21 Calculational design of abstract interpretations

3.22 Conclusion

3.23 Exercises

3.24 Answers to selected exercises

3.25 Bibliography

—_ =
= O 0O O 0 N NN U G W W -

DN = = e e e e e
S N U1 L1 U1 W NN

3.1 The rule of signs

The Indian mathematician and astronomer Brahmagupta (born c. 598, died after 665) was the first
to give rules to compute with zero and invented the rule of signs [14, page 151]. Verses 18.30-35 of
his Brahma-sphut-a-siddhanta state

[The sum] of two positives is positive, of two negatives negative; of a positive and a negative [the
sum] is their difference; if they are equal it is zero. The sum of a negative and zero is negative, [that]

of a positive and zero positive, [and that] of two zeros zero.

https://en.wikipedia.org/wiki/Brahmagupta

MITPress NewMath.cls

IATEX

Book Style

Size: 7x9 32pc text width

November 28, 2018 7:26pm

Ch. 3 Syntax, semantics, properties, and static analysis of expressions

A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When
a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

The product of a negative and a positive is negative, of two negatives positive, and of positives pos-
itive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.

A positive divided by a positive or a negative divided by a negative is positive; a zero divided by a
zero is zero; a positive divided by a negative is negative; a negative divided by a positive is [also]

negative.

A negative or a positive divided by zero has that [zero] as its divisor, or zero divided by a negative
or a positive [has that negative or positive as its divisor]. The square of a negative or of a positive is
positive; [the square] of zero is zero.

Exercise 3.1. What is the modern understanding of %?

Exercise 3.2 (Erroneous sign analysis).

O

Following the pseudo-evaluation idea of Peter Naur in

compilation [12, 13], Michel Sintzoff [16] postulates the sign analysis in the following way:

“a x a + b x byields always the object “pos” when a and b are the objects “pos” or “neg”, and when
the valuation is defined as follows :

pos+pos
pos+neg
neg+pos
neg+neg
V(p+q)
V(0)
V(-1)

pos

pos,neg
= pos,neg

neg
V(p)+V(q)
= V(1) =
= V(2) =

pos X pos
pos X neg
neq X pos
neg X neg
Vipxq)
= pos
= neg

pos
neg
neg
pos
V(p) x V(q)

The valuation of a X a + b x b yields “pos” by the following computation :

V(a) = posneg V(b)
V(axa) = posxpos, negxneg V(bxb)
= pos,pos = pos
Viaxa+bxb) = V(axa)+V(bxb) =

What is wrong about it?

pos+pos =

pos,neg
pos X pos, neg X neg
pos,pos =

pos”

pos

3.2 Sign analysis of iterative programs

The rule of signs generalizes to programs. For example the sign of x in
x+1 }
(where the iteration condition (...) is ignored) can be determined as follows:

x = 0; while (..) { x

* After zero iteration, when entering the loop, if ever, x = 0;

* After one iteration, the sign of x is zero, 1 is positive, so the sum x+1 of zero and positive is positive;

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.3 Sign abstraction, informally 3

* For the basis, we have shown that after zero or one iteration, the sign of x is zero (at iteration 0) or
positive (at iteration 1) that is positive after at most 1 iteration;

* For the induction step, if after at most n > 0 iterations, the sign of x is positive, then 1 is positive,
so the sum x+1 of positive and positive is positive after the next iteration;

* Afterat mostn+1 iterations, x is positive (at the previous n > 0 iterations) or positive (at the n+1-th
iteration) then x is positive after at most n + 1 iterations;

* By recurrence on the number of iterations in the loop, x is positive in the loop.

3.3 Sign abstraction, informally

The abstraction is that you do not (always) need to know the absolute value of the arguments to
know the sign of the result of an operation. This is sometimes precise (for example for the multipli-
cation) but can be imprecise (for example the sign of the sum of a positive and a negative is unknown
when ignoring the absolute value of the arguments). This is nevertheless useful in practice if you
know what to do when you don’t know the sign. For example, a compiler will not suppress the
lower bound check when accessing an array with an index not known to be positive. Moreover, it
is always possible to refine the abstraction to get more precise results. For example Brahmagupta
states [14, page 151]

[If] a smaller [positive] is to be subtracted from a larger positive, [the result] is positive; [if] a smaller
negative from a larger negative, [the result] is negative; [if] a larger [negative or positive is to be
subtracted] from a smaller [positive or negative, the algebraic sign of] their difference is reversed—
negative [becomes] positive and positive negative. ...

Knowing an interval of the possible values is more precise than just knowing the sign. Interval
analysis is considered is Chapter 31 (Static Interval Analyis).

The objective of this Chapter 3 is to formalize abstract interpretations of arithmetic expressions
(like the rule of signs) and to show how the abstraction can be formally calculated out of the se-
mantics of arithmetic expressions.

3.4 Syntax of expressions

Let us consider the language of expressions.

XY,... € V variables (V not empty)
€ A == 1|x]|A-A arithmetic expressions
B € B := A <A, | B;nandB, boolean expressions
€ E == A|B expressions

This context-free grammar specifies sets of program syntactic entities, the set ¥ of variables, A of
arithmetic expressions, B of boolean expressions, and £ of either arithmetic or boolean expressions.
The mathematical variables x, y, A, B, and E denote arbitrary elements of these sets.

https://en.wikipedia.org/wiki/Brahmagupta

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

4 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

There syntax is defined by grammar rules such as A ::= 1 | x | A; - A, specifying that an
arithmetic expression A is either the constant 1, a variable x € V, or the difference A; - A, of two
arithmetic expressions A; and A,. The set V of variables is left unspecified (usually it is an identifier
starting with a letter followed by 0 or more letters or digits or special symbols like “_”).

This grammar is ambiguous since 1 - 1 -1 can either be understood as (1-1)-1o0or1-(1-1). We
choose the first alternative so the binary operator is left-associative. In boolean expressions, nand is
left-associative and the arithmetic operators have priority over boolean operators (so1-1<1-1-1
is ((1 - 1) <((1 - 1) - 1)) ie. false ff). The description of syntax by grammar dates back to Noam
Chomsky [4].

3.5 Structural definitions

Structural definitions are generalizations of recursive definitions on naturals. Assume that we want
to define a function f € £ — S where S is a set. A structural definition is a recursive definition of
the form

* f(1) and f(x) are defined to be constants (so f(1) £ ¢, and f(x) £ ¢, wherec,,c, € S);

* f(A; - A,) and f(A; < A,) are functions of f(A;) and f(A,) (so f(A; - A,) 2 F.(f(A)), f(A))),
F(A; <Ay) 2 E(f(A), f(A))

* f(BynandB,) = F ,(f(By), f(B,)) where F_,F,F,_ ., €SxS—S.

Exercise 3.3. Define vars € £ — (V) such that vars[E] is the (possibly empty) set of variables
occurring in expression E. o

Structural definitions are the basis of denotational semantics introduced by Dana Scott and Christo-
pher Strachey [15] (and called compositional in this context).

3.6 Environments

In order to formally define the value of any expression e.g. 1 - 1 - 1 = —1, we need to know the value
of variables occurring in expressions e.g. x — 1is 2 when x = 3, x - 1 is 42 when x = 43, etc. We
cannot enumerate the infinitely many cases ..., x = =1, x = 0, x = 1, So we use an environment
p € Ev where Ev £ V — Z that is a function p mapping a variable x to its value p(x) in the set Z
of all mathematical integers. By reasoning on the function p we can handle infinitely many cases at
once. For example, in environment p, the value of x - 1 is p(x) — 1 where p(x) is the value of variable
x, 1 is the mathematical integer one and — is the mathematical difference.

12 js “is defined as”

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.8 Proofs by structural induction 5

3.7 Structural semantics of expressions

Given an environment p € Ev 2 ¥V — Z mapping variables x € V to their value p(x) € Z, the
value d [A]p € Z of an arithmetic expression A € A and B[B]p € B of aboolean expression B € B
is structurally defined as follows.

Alp = 1 (3.4)
dx]p = px)
da -nlp = da]p-d]Alp
Bl <a)p = dla]p < dla]p
BB nandB,]p = B[e,]pT B[s,]p
S[e] & dJE] when E€A
S[E] & RB[E] when E€B

1, x, -, <, nand, A, and B are syntactic objects e.g. strings of characters. 1, p, —, <, and T are mathe-
matical objects. The recursive definition is structural i.e. by induction on the syntax of expressions
E (either arithmetic A or boolean B). The semantics of complex expressions o [A] or GB[B] is de-
fined in function of the semantics of simpler expressions until reaching basic cases A [1]p = 1
and o [x]p £ p(x) for which the value is constant. The “not and” or “nand” boolean operator T is

defined by the following truth table
a |t|t|ff|ff

b |t|ff|tt|ff

alb|fflt|t|t

The functions & and 9B will be shown to be a total functions i.e. well-defined for all their argu-
ments in Exercise 3.8. This shows that the recursion always terminates.

Exercise 3.5. Define the logical operators (negation -, implication =, conjunction V, disjunction
A) in terms of T.]

Exercise 3.6. Write a program in the language of your choice that inputs (an encoding of) an
expression (with no variables) and returns the value of this expression. |

Exercise 3.7. Prove that any integer z € Z has a finite denotation in the syntax A of arithmetic
expressions. O

3.8 Proofs by structural induction

Proofs by structural induction [2] generalize proofs by recurrence. They are well suited for proving
properties of structural definitions. Rod Burstall [2] introduced them as follows “If for some set of
structures a structure has a certain property whenever all its proper constituents have that property

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

6 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

then all the structures in the set have the property”. So, to prove that a property P holds for all
expressions E € [, we prove that the property holds for the basic cases 1 and x. Then assuming that
the property holds for A; and A,, we prove that it holds for A; - A, and A; < A,. Moreover, assuming
the property holds for boolean expressions B; and B,, we prove that it also holds for B, nand B,. We
conclude that £ ¢ P.

Exercise 3.8. Prove, by structural induction on the syntax of expressions, that 9 is a total function
ie. VB € B . RB[B] € (V — Z) — B. (The property to be proved is therefore P = {B € B | B[B] ¢
(V — Z) — B}). (A similar property has to be stated and proved for arithmetic expressions.) 0O

Exercise 3.9. Prove, by structural induction on the syntax of expressions, that if x ¢ vars[B] and
Vy € W\ {x}. p'(y) = p(y) then B[B]p = B[B]p’. (A similar property has to be stated and proved
for arithmetic expressions.) o

3.9 Semantic properties of expressions

By expression property we might mean a property of the syntax of the expression (such has A has 42
signs - more precisely A belongs to the set of expressions with 42 signs -). This is software metrics
and metrology [17], of little interest to us.

Instead an expression property will be understood as a semantic property that is a property of the
semantics of expressions.

The semantics o [A] of an expression A maps environments p € ¥ — Z toavaluesin Z, o [A] €
(V - Z) — Z. Following Section 2.3, a semantic property of an expression is a set of possible
semantics hence belongs to p((V — Z) — Z).If P € p((V — Z) — Z) is a semantic property,
then o [A] € P means that “A has property P”.

Example3.10 P={b|VpeV - Z .b(p) =tt}U{b|Vp eV = Z . b(p) = ff} is the semantic
property of a boolean expression “to always evaluate to tt” or “to always evaluate to ff”. For example
x % x+ 1> 0and x % x < 0 have this property but not x * x > 0 since x * x > 0 is sometimes
true (when |p(x)| > 0) and sometimes false (when |p(x)| = 0). So B[x * x + 1 > 0] € P while
Blx xx>0] ¢ P.]

Notice that semantic properties P of expressions are just a particular case of property of expressions
i.e. the property {E € £ | S[E] € P}.

3.10 Collecting semantics of expressions
The collecting semantics of expressions is the strongest property of an expression.

S°[a] 2 {d[A]} € p((V—>2Z) - 2Z) (3.11)

Arithmetic expression A is said to have semantic property P € p((V — Z) — Z) if and only
if A[A] € P or equivalently 8°[A] < P so that $°[A] is the strongest property of A. The idea

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.11 Proving semantic properties of expressions by structural induction 7

of collecting semantics was introduced in [6] (under the qualifier “static semantics”) as a basis for
proving the soundness of static analyzes. The concept of collecting semantics is further developed
in Chapter 8.

The fact that (A [A] € P) & (8°[A] € P) may suggest that the concept of collecting semantics
is of poor interest. However, x € S & {x} C S is the basic idea for abstracting set theory into
order/lattice theory [1]. It will later allows us to use order theory (which has the equivalent of € but
not of €), see Chapter 10 (Posets, lattices, and complete lattices).

Similarly, the collecting semantics of boolean expressions is

SC[[B]] = {%[[Bﬂ} € p((V—-2Z)—-B)

Again the collecting semantics 8 [E] of expressions E is just a particular case of property of expres-
sions i.e. the property {E' € £ | S[E'] € S[E]} i.e. all expressions E’ that have the same semantics
as E.

3.11 Proving semantic properties of expressions by structural induction

Semantic properties can be proved by structural induction on expressions. For basic cases the proof
is 8°[1] € Pand 8[x] € P. Assuming §°[A;] € P and $°[A,]] € P, we prove S°[A; - A,] € P
and 8°[A; <A,] € P. Assuming 8“[B,] € Pand 8[[B,] < P, we prove that for $“[B,nandB,] < P.
By structural induction, we conclude that £ € {E € £ | 8[E] < P}ie VE € £ . 8°[E] C P.

Exercise 3.12. Prove by structural induction on expressions that
S[1] = {pe(V-o2Z) 1}

SIx] = {pe(V—12Z) - p(x)}
Sa-n] = fpe(V=2) - filp) - folp) | f € STIA] A fr € ST[A]}
S[A <A)] = {pe(V->2Z) - filp) < folp) | fr € ST[A A fr € $7[A,]}
$°[BynandB,] = {pe(V—=>2Z)m fi(p)T folp) | f € S°[B] A f, € $°[B,]} o
Exercise 3.13. Continuing Exercise 3.12, prove that $“[x - x] = {p € (V - Z) — 0}. m

Program proof methods are further studied in Chapters 22 () and 23 (Abstract verification se-
mantics).

3.12 Abstract sign properties

We let P* £ {1,,<0,=0,>0,<0,+#0, >0, T.} be the set of signs where <0 is “strictly negative’, >0
is “positive or zero’, etc., =0 is “equal to zero’, #0 is “different from zero” (i.e. “strictly negative or
strictly positive”). T. (top) is “unknown sign” (i.e. tt that is “negative, zero, or positive”), L. (bottom)
is “no sign” (i.e. ff that is “neither negative, zero, nor positive”) be the abstract properties of the sign
abstract domain D, .

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

8 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

Exercise 3.14. Continuing Section 3.2, provide an example of program where the sign of a variable
xis L. 0

The sign minus operation -. € P* x P* — P* defines the sign s; -, s, of x - y when x has sign
s; and y has sign s,.

S;=S | L. <0 =0 >0 <0 #0 >0 T.
s L. 1. e o e IV
<0| L. T. <0 <0 . . <0 T
=0| 1, >0 =0 <0 20 #0 <0 T
>0 L, >0 >0 T. >0 . T T
0] L, T. <0 <0 . T <0 T
#] L. T #0 T T T T T
20| L. > 20 T. 20 T. T. T
Te L T. T T T T T T

Exercise 3.15. Show that sign operator -. is imprecise for difference (-). o

Exercise 3.16. What is wrong with the int abs(int x) { return (x<0) ? -x : x; } method in
Java™? O

Exercise 3.17. Prove that the sign minus operation -, is incorrect with machine integers. o

Exercise 3.18. Design a sign operator for multiplication of mathematical integers (x). Prove that it
is exact i.e. the sign of the result is exactly known from the sign of the parameters. o

3.13 Structural sign semantics of expressions

The sign of an expression depends upon the sign of its free variables. We represent the sign of
variables by a sign environment p € ¥ — P* such that p(x) is the sign of variable x.

The sign semantics 8 *[A] f) of an arithmetic expression A is the sign of the expression value when
evaluated with variables which sign is given by the sign environment f) For example, if f)(x) =>0
and p(y) = <0 then 8*[x - y]p = >0.

The structural sign semantics $*[A] € (V — P*) — P* may be defined as follows.

S*[1]p = >0
STp = p0o
S A -Ap = (8*[A]p) -~ (S[A,]p)

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.14 Soundness 9

To be more precise, if any of the variables has sign 1., meaning “the expression is never evaluated”
then the result is 1., meaning “no result is ever returned”. We say that signs are L.-strict and define
T to enforce it.

Tlpls 2 (3yeV.ply)=1.7 L.ss)
8[1fp = T'[pl(>0) (3.19)
S [xlp = Tlplp()

S*[A, - A]p (8*[A,]p) ~ (8*[A]p)

Exercise 3.20. Prove by structural induction on A that if 3x € V. p(x) = L. then 8*[A]p = 1.. O

3.14 Soundness

We would like to prove that the sign semantics 8*[A] of an arithmetic expression A is a weaker prop-
erty than the collecting semantics 8 “[A]. But 8*[A] € (V — P*) — P* while 8°[A] € p((V —
Z) — Z) and the concrete semantic properties in p((V — Z) — Z) are hardly comparable to the
abstract sign properties in (V — P*) — P,

The solution if to express abstract properties in (¥ — P*) — [P* as a concrete property in
©((V — Z) — Z). For that purpose we will define a concretization function j. € (V — P*) —
P*) - (p((V — Z) — Z)) mapping an abstract property to an “equivalent” concrete property.

Then the concrete semantics implies the abstract semantics up to concretization in that for all
arithmetic expressions A,

S°[A] < J.(S*[AD.

3.15 Sign concretization
We define the sign concretization function j. in several steps.

1. First we consider signs (in P*) as properties of integers (in ((Z)).

p(L) 2 @ 7:(<0) 2 {zeZ|z<0} (3.21)
1:(<0) = {z€Z|z<0} yp(zx0) = {ze€Z|z+0}

y:(=0) = {0} 1:(30) = {ze€Z|z>0}

y:(>0) = {zeZ|z>0} () = Z

2. Then we consider sign environments ﬁ € V — P* as properties of environments (in p(V —
Z)). ﬁ is the abstract property of all concrete environments p such that for all variables x, the
sign of p(x) is f)(x).

p(p) 2 fpeV - Z|VxeV. p(x) e y.(p(x))} (3.22)

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

10 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

Observe that if p(x) = L, for some x € ¥ then .(p(x)) = D so Vx € V . p(x) € y.(p(x))
is false proving that)‘/i(f)) = . So the abstraction of false (& € @(V — Z)) is any abstract
environment ;i) with at least one variable x such that ﬁ(x) =1..

3. Finally the concretization of abstract properties P € (V — P*) — P* is the concrete property
7.(P) € ©((V = Z) — Z) defined as

7.P) 2 (8e(V-Z)—>Z|VpeV - Pt Ypeyp(p). Sp) € y.(P(p))} (3.23)
i.e. A has abstract property P, that is A [A] € 7.(P), if and only if for all environments p with

signs p, the value o [A] p of arithmetic expression A has sign P(p).

Exercise 3.24. Assume that y(pos) = {z € Z | z > 0} and y(neg) = {z € Z | z < 0} as in Exer-
cise 3.2. Provide a sound definition of the rule of signs for multiplication x with this interpretation
of the rule of sign. |

Exercise 3.25 (A posteriori soundness). Prove that for all A € 4, $°[A] <€ y.(S*[A]). m

3.16 Sign lattice

Sign properties P* £ {y.(s) | s € P*} of integers can be partially ordered by C (i.e. implication)
as represented by the Hasse diagram below where the nodes are the elements of P* and there is a
bottom-up arrow from P € P* to P’ € P* when P ¢ P’ andno Q € P* suchthat P ¢ Q ¢ P'. So
P ¢ Qif and only if there is a path from P to Q in the Hasse diagram.

The abstract signs P* are an isomorphic representation of P* as shown on the right, where the
isomorphism is y, € P* — P*.

Z T
PN /1IN
{z|z<0} {z |z # 0} {z|z=0} <0 #0 =0
e DXX] XX
{z |z <0} {0} {z | z> 0} <0 =0 >0
7 NVZ
%] Ly

Therefore, the abstract sign properties are partially ordered by C. defined by s C. s’ if and only if
y:(s) S p:(s').

Exercise 3.26. Specify algorithmically the inclusion C. on P* (mathematically defined above as
s C. s"ifand only if y.(s) € y.(s")).]

MITPress NewMath.cls IATEX Book Style

3.17 Sign abstraction, formally

Size: 7x9 32pc text width

November 28, 2018

7:26pm

11

Exercise 3.27. Prove that -. is increasing in each of its parameters i.e. if s; C. s’; thens; - s, C.
s’ —syands, C. ', thens; s, C. s, ~s', sothatifs; C. s'; and s, C. s/, thens; —.s, C. s’y —.5/5.
m

3.17 Sign abstraction, formally
3.17.1 Abstraction of sign properties

An integer property like 2N + 1 (odd naturals) can be over-approximated in P* by sign properties
{ze€eZ|z>04L{ze€Z]|z 3> 0},andZ. The best over-approximation of 2N + 1 in P* is
{z € Z | z > 0} since it is sound (in that 2N + 1 € {z € Z | z > 0}) and the most precise/strongest
(inthat{z e Z |z>0}c{zeZ|z20} < Z).
More generally, the best over-approximation of any integer property P € ((Z) in P* is given by
the abstraction function
a(P) =

N
Q
=
l

(3.28)

N
—_
N
N
N
(=}
=

)
AN
[}

S

—_
(=}
——
on)
|
o

{z|z>0}72>0
{z1z2<0}72<0
{z|z+0}2+0
{z|z=0}7220

2= ~Ta ~ s -Bila - Bs - B~
N 1N 1NN

00 o e e == = = —

e

a.(P) is the best over-approximation of P € ©(Z) in P* since

* P C y.(a.(P)) i.e. a.(P) is an over-approximation/sound abstraction of P;
+ ifP e P*and P ¢ yi(l_J) then «.(P) C. P ie. a.(P) is more precise than any other over-
approximation/sound abstraction of P.

Exercise 3.29. Provethats, —. s, = a.({x — y | x € y.(s) A y € p.(s)}). O

Exercise 3.30. Define the finite join L, on P* such that L, {s; | i € A} £ a.((U{y.(s;) | i € A}). Prove
thatsL. s’ = {a | a € {<0,=0,>0} A(a C. sVa C. s')}. Specify the join Ll. on P* algorithmically. o

3.17.2 Abstraction of environment properties
The best abstraction of an environment property P € p(V — Z) is

a(P) 2 xeV e allp(x) | peP)) (331)

i.e. for each variable x it is the sign of the set of values p(x) in all environments p satisfying P.
Observe that 6.(P) 2 i, £ x€V — 1, while iff)(x) = 1, then)'/i(/i)) =Jsod e p(V - Z)
has several possible abstractions in P* but L, is the pointwise C,-smallest of them.

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

12 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

3.17.3 Abstraction of semantic properties

The best abstraction of a semantic property P € p((V — Z) — Z) is
wP) 2 peV P o a.((8(p)| 8 ePApen(p) (3.32)

i.e. given a sign environment ﬁ o'zi(P)ﬁ is the sign of the possible results 8§ (p) of the semantics
8 € P with property P for all environments p with sign p.

3.18 Characteristic property of abstraction/concretization
The abstraction/concretization functions (a., y.) are closely related in that for all P € ©@(Z) and
P € P*, they satisfy

oa.(P)C. P & PcCy.(P)

Proof By definition (3.21) of . and (3.28) of «., we observe that

* y.isincreasing i.e.if s C. s’ then y.(s) € y.(s');

* a, isincreasing i.e. if P € P’ then a.(P) C. a.(P'); (3.33)

* ifo.(P) = sthen P C y.(s) so y. ° a. is extensive i.e. P C y. ° a.(P); (3.34)

* by case analysis, if P = y.(s) then a.(P) = s so «. ° y. is the identity hence reductive (3.35)
i.e. o, ° p.(s) C. ssince L, is reflexive.

It follows that

a.(P)c. P
=Y. a.(P) Sy (P) {y- is increasing and def. function composition -§
=>PCy (P) {y: ° . is extensive and C transitive§
= a.(P) C. ot © Y (ﬁ) { . is increasing and def. function composition §
= a.(P)C, P {a. ° y. is reductive and def. function composition -§ o

Similar results hold for {(d., y.), and (&., J.), see Exercise 3.37.

3.19 Galois connection

The abstraction/concretization functions {(a., y.) satisfy VP € @(Z) . VP € P* . oci(P)VE1 Pe
Pc yt(ﬁ), which is the definition of a Galois connection, which we write (©(Z), <) ai (P,
C.).)
More generally,
Yy = _
Definition 3.36 (Galois connection) a Galois connection (P, C) ‘% (P, C) is such that the

concrete domain (P, C) and the abstract domain (P, T) are partial orders, « € P — P is the

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.20 Calculational design of the sign semantics of expressions 13

abstraction function, y € P — P is the concretization function, and VP € P . VP € P . a(P) €
Po PCyP). a)

Exercise 3.37. Prove that (p(V — Z), <) ‘—_—_V:_, (V - P*, L), and (p((V — Z) — Z),

+

) = ((V - P*) - P*, &), o
o+

3.20 Calculational design of the sign semantics of expressions

The soundness requirement in Section 3.15 is that VA € A . 8°[A] <€ .(8*[A]). By the Galois
connection of Exercise 3.37, this is equivalent to ¢.(S“[A]) £. 8*[A]. Therefore the sign semantics
is a sign abstraction of the collecting semantics. It follows that we can design 8*[A] by calculus,
calculating &. (8 “[A]) using L. -over-approximation to avoid all computations made in the concrete
domain.

* We first consider the case when Ix € V . ﬁ(x) = 1. so that)'/i(ﬁ) = 0.

— &.(S°[ADp

= a.({8(p) | 8 € S[A] Ap € .(p)}) {def. (3.32) of &, §
= a.({A[A](p) | p € y:(p)}) (def. (3.11) of 8°[A]§
= a.(D) (3x € V. p(x) = L. so that y.(p) = @
= 1, {def. (3.28) of a..§
= 8*[alp

{in accordance with (3.19) such that, by Exercise 3.20, Ix € V . f)(x) = 1. implies
S*[ALp = 1.3

* Then we consider the case when Vx € V . f)(x) # L. so that yi(ﬁ) # . We proceed by
structural induction on A.

— For the basic case of a constant 1, we just apply the definitions.

a(8°[1]p
= a.({8(p) | 8 € 8°[1] Ap € yu(p)}) {def. (3.32) of &. §
= a.({(A[1](p) | p € y:(P)}) {def. (3.11) of 8[1] §
= a.({1}) {y-(p) is not empty and def. (3.4) of A[1]§
= >0 {def. (3.28) of a..§

2 §*[1]p {in accordance with (3.19) when Vy € V . p(y) # L. §

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018

14

C.

C.

7:26pm

Ch. 3 Syntax, semantics, properties, and static analysis of expressions

For the basic case of a variable x, we apply the definitions and then simplify.

6.(8[x])p

a.({S(p) | 8 € S°[x] Apep.(p)}) {def. (3.32) of &, §
a.({A[x[(p) | p € y:(p)}) {def. (3.11) of €[]
a:({p(x) | p € y:(p)}) {def. (3.4) of A [x] §
a:({p(x) | Yy € V. p(y) € y:(p(y))}) {def. (3.22) of y.§
a.({p(x) | p(x) € y:(p())})

{since y.(p(y)) is not empty so for y # x, p(y) can be chosen arbitrarily to satisfy
P(Y) € 1.(p(y))§

a:({x | x € y(p(x))}) Uetting x = p(x)§
oci(yi(f)(x))) {since S = {x | z € S} for any set S§
p(x) {by (3.35), a, ° ¥, is the identityS
Si[[x]}f) {in accordance with (3.19) when Vy € V. fJ(y) # 1.5

For the inductive case of A; - A,, we assume, by structural induction hypothesis, that

. (S°[A]) € 8*[A;] and &.(S°[A,]) E. S*[A,]
&(STA, - A])p

a.({8(p) | 8 € S°[A, - A,] Ap € 1(p)}) {def. (3.32) of &, §
a.({A[A - A]() | pey(p)}) {def. (3.11) of S[A, - A,]§
a. ({A[A](p) - A[A](p) | p € 1. (P)}) (def. (3.4) of o §
a.(lx—ylx e {d[a]) | p' € (P} Ay e {d[A](p") | p" € p(p)}}

Ufp)—glp) lpeREcix—ylxe{f(p)|p eRIAye{g(p”)|p" € R}}and
«. is increasing by (3.33).

This over-approximation allows for A; and A, to be evaluated in the concrete
with different environments p’ and p” with the same sign of variables but possibly
different values of variables. This accounts for the fact that the rule of signs does not
take relationships between values of variables into account. For example the sign of
x - x is not =0 in general, see Exercise 3.15.§

a.(fx -y | x € y(a. (AP | p € 1u(PID A y €yl ({H[A](p) | p € - (PID})

Ux-ylxePAyeQlc{x-y|xe€p(a(P)) Ay € y(a(Q))} since y. ° a. is
extensive by (3.34) and «. is increasing by (3.33).
This over-approximation allows for the evaluation of the sign to be performed
in the abstract with -, instead of the concrete. §

a.({A[A](p) | p € yu(P)D) — . {A[A,](p) | p € - (p)D)

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.21 Calculational design of abstract interpretations 15

(s1 = sy =o.({x =y | x € y.(s)) A y € .(s,)}) by Exercise 3.29§
= a.({8(p) | 8 € S°[AJAp € (PN~ a.({S(p) | 8 € S[A,]Ap € :(p)}) {def. (3.11)
of 8§
= & (SC[A]p — @ (S [A])p {def. (3.32) of . §
= & (S°[A]p — @ (S [A])p {def. (3.32) of . §
C. (8*[Alp) = ($*[A]p)
{induction hypothesis and -, is increasing in both parameters by Exercise 3.27§

+

2 8 [A -A]p {in accordance with (3.19) when Vy € V. f)(y) #1.5 o

3.21 Calculational design of abstract interpretations
This concludes our formal design of the rule of signs for arithmetic expressions.

* We first define the semantics & [A] of arithmetic expressions A in (3.4);

* The strongest property of the semantics of arithmetic expressions A is their collecting semantics
8C[A] in (3.11);

* Among the semantic properties p((V — Z) — Z) of arithmetic expressions, we select a
subset of properties of interest i.e. the sign properties and choose a computer representation,
as defined by the abstraction function d&. in (3.32), which is the lower adjoint of the Galois
connection (2?2);

+ The rule of sign $*[A] is then formally derived by calculational design in Section 3.20 by over-
approximating the best abstraction é.(8“[A]]) of the collecting semantics S[A].

It follows that 8$*[A] is sound by construction.

3.22 Conclusion

We have defined the semantics of expressions, their properties, a proof method, and a sign analysis.
Instead of designing the rule of sign empirically and then proving its soundness (as proposed in
Exercise 3.25), we used the soundness requirement as a guideline for designing the abstract sign
semantics by calculus.
This sign analysis discovers an abstract property of an arithmetic expression by computing in the
abstract only. This may involve some loss of precision, which was the case for the sign analysis.
The sign semantics is finite so it is an easily implementable static analysis (see Exercise 5.11)
whereas exhaustive case analysis would not scale up (see Exercise 3.42).

3.23 Exercises

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

16 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

Exercise 3.38 (Parity). Design the parity analysis of expressions E € [£. Show that the parity

analysis is correct with machine integers. o
Exercise 3.39 (Constancy analysis). Design the T
analysis of expressions E € £ using the oppo- // | \\

. . : 1 0 1
site constancy properties such that y(1) = &,
V(i) = (i} i € Z, and (T) = Z [9], SN l e

Exercise 3.40 (Typing). Extend the semantics of expressions with the real constant 1.0 and a
generic minus operation with implicit conversion from nat to int to real where p(nat) 2 N,
p(int) 2 Z, and y(real) 2 R. Design a type analysis for these extended expressions [11]. o

Exercise 3.41. Define the cartesian set transformer P[A] of an arithmetic expression A to be

P[A] € (V —p(Z) — p(Z)

P[A] P {d[A]p|p ey (P)}.
For example if P(x) = {0, 1} and P(y) = {-1,0} then P[x-y]P ={0, 1,2} and P[x-x]P ={-1,0, 1}.
Prove that
Plap = {1}
P[x|P £ P(x)
P[A, -AJP 2 {x—y|xeP[A]PAyeP[A]P}
Pla, <AJP 2 {x<y|xeP[A]PAyeP[A]P}

P[B, nand B,|P {xTylxeP[B]PAyeP[B,]P}]

Exercise 3.42 (Model checking). Implement the cartesian property transformer of Exercise 3.41 in
the language of your choice. In order to prove that x -y = 0 when x = y, check that P[x - y]P = {0}

for all P such that P(x) = {i} and P(y) = {i},i € 2 — 1 where p = 2,3,...,32 is the bit size of
integers. Observe the state explosion problem [5]. o

3.24 Answers to selected exercises

Answer of exercise 3.1. g and more generally Z, z € Z is undefined (computer scientists would

say the computation has a “runtime error”). o

Answer of exercise 3.2. 0 is pos, —1 is neg, the sign of 0 x —1 = 0 is pos, in contradiction with the
rule pos X neg = neg. o

Answer of exercise 3.3.

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.24 Answers to selected exercises 17
vars[1l]] = @
vars[x] 2 {x}
vars[A, - A,] 2 vars[A,] U vars[A,]
vars[A; <A, 2 vars[A,] Uvars[A,]

vars[B; nand B,] vars[[B,] U vars[B,] i

Answer of exercise 3.6. In OCaml [10], we have

type aexpr = Num of int | Minus of aexpr * aexpr;;
type bexpr = Lt of aexpr * aexpr | Nand of bexpr * bexpr;;

let rec eval_aexpr a = match a with
| Num i -> 1
| Minus (al,a2) -> (eval_aexpr al) - (eval_aexpr a2)
let rec eval_bexpr b = match b with
| Lt (al,a2) -> (eval_aexpr al) < (eval_aexpr a2)
| Nand (b1,b2) -> not((eval_bexpr bl) && (eval_bexpr b2));;

eval_bexpr (Lt ((Minus (Num 1, Num 2)), (Minus (Num 0@, Num 2))));;
- : bool = false m]

Answer of exercise 3.7. For all environments p, 1 - 1]p = 0. If A [A]p = n then A A - ((1 -

1)-1)]p=n+land A[(1-1)-A] =-n. o
Answer of exercise 3.14. The loop bodyin x = 0; while (0) { x = x+1 } isnever executed
to the set of possible values of x in this loop body is empty so its sign is L.. o
Answer of exercise 3.15. Consider 42 — 42 = 0. The sign is (>0) -. (>0) = T. not =0. O

Answer of exercise 3.20. This is true for A = 1 and A = x by definition of J*[p]. Assume, by
structural induction that this is true for A; and A,. Then 8*[A; - A,]p = (S*[A,]p) - (8*[A,]p)
=1, - 1. = L, by induction hypothesis and def. of -.. o

Answer of exercise 3.29. We can use the soundness requirement as a definition of s; —.s, £ a. ({x—y |
x € y.(s;) A y € y.(s,)}) to design -, by calculus. We have to consider all possible cases for s; and
s,. We show three cases T. -, L. = 1., <0 -, 20 =<0,and 20 -, 20 = T..

—a.({x - Yy | x € Yt(Tr) Ny € Yi(lr)})
=a.(x-ylxeZnryed}) {def. y.§
= a.(F) = L. {def. a.§

—o.({x -yl xep(<0)Ayey.(>0)})
=a(fx—ylx<0Ayz0}) (def. y.§

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

18 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

=a.({x|x<0}) = <0 {def. o §

—a.(fx -yl x€p(20)Ay € y.(20)})
=a(fx-ylx=20Ay=0}) {def. y.§

=a.(Z) = T {def. a.§
The calculations can be formally certified by a proof verifier [3, 8].

One can also consider all cases s € P* for s, -. s, for given s, s, when needed, using a theorem
prover to make the proof that {x — y | x € y.(s;) A y € y.(s;)} € y.(s), and returning T. when the
proof fails (e.g. times out). Among all possible answers s for which the theorem prover could make
the proof, the C.-minimal one is chosen, if any. Otherwise, an arbitrary C.-minimal one has to be
selected. This is called predicate abstraction [7].

o

Answer of exercise 3.37. Forall P € p(V — Z) and p € ¥V — P*, we have

&.(P) . p

& Vx € V. &, (P)x C, p(x) { pointwise def. of . §
eVxeV.a(p(x) | peP}) L. p(x) {def. (3.31) of & §
SVxe V. {p(x) | p € P} Cp(p(x) Up@), ©) == (P*, £.)S
SVxeV.¥peP. p(x) € p.(p(x) ldef €S
oVpeP.VxeV.p(x) e p.(p(x) {def. V§
oPcipeV >Z|VxeV.px)ey(px) {def. C§
& P Cy.(p)

{ def. (3.22) of y., proving {p(V — Z), <) y_<—i, (V - P*,)
o+

Forall P € p((V — Z) — Z) and P € (V — P*) — P*, we have

&, (P)C, P
e VpeV - P @ (P)pC. P(p) { pointwise def. of . §
eVpeV - Pt a.({8(p) | 8 e PAp e y.(p)}) C. P(p) {def. (3.32) of & §

+

eVpeV P {8(p)| 8 ePApe.(p)<y.(P(p)
Up(@), ©) = (P*,)5

eVpeV - P* V8 eP.Vpe.(p). Sp) € y.(P(p)) {def. C§
©V8 eP.YpeV - Pt . Vpe.(p). Sp) e y.(P(p) {def. V§
©V8eP.8 €j.(P) {def. € and (3.23) of . §

& P Cy.(P)

MITPress NewMath.cls IATEX Book Style

3.24 Answers to selected exercises

Size: 7x9 32pc text width

November 28, 2018

19

{def. <, proving (((V — Z) — Z), <) == ((V — P*) - P*, £.).§ 0

Answer of exercise 3.42. The model checking time is exponential in the bit size of integers.

$ cat CartesianTransformer.py
import time

import matplotlib.pyplot as pyplot
from sets dimport *

i dinteger

’x’ variables

e 1= (CINT’, 1) |
(’MINUS’, el, e2)

CVAR?, ’x?) |

maxp = 32
natural = Set(range(0, 2 ** maxp))
def eval (e, P):
if e[0] INT’:
return Set([e[1]])
if e[0] == ’VAR’:
return P(e[1])
if e[0] == ’MINUS’:
P1 = eval(e[1], P)
P2 = eval(e[2], P)
res = []
for x in P1:
for y in P2:
res + [x - y]
return Set(res)
handle_error()

res =

expr = (’MINUS’,
y’))

(’VAR’, ’x’), (’VAR’,

def makeP(i):
def P(x):
if x == ”x”:
return Set([i])
-if X == ”y”:
return Set([i])
return Set([0])
return P

x =[]

’

y =[]

result = Set([])

for p in range (2, maxp):
start_time = time.time()
for i in range (0, ((2 ** p) - 1)):

P = makeP(i)

result = result | eval (expr, P)

finish_time = time.time()

x = x + [p]
t = (finish_time - start_time)
y =y + [t]

print p, result, t, ”seconds”
pyplot.plot(x,y)
pyplot.xlabel(’p?’)
pyplot.ylabel(’time(2xxp-1)"’)
pyplot.savefig(’CartesianTransformer.png
’)
$ /usr/bin/python CartesianTransformer.
Py
2 Set([0]) 0.000694036483765 seconds
3 Set([0]) 0.000127077102661 seconds..

25 Set([0]) 262.113693953 seconds
26 Set([0]) 537.459581137 seconds
27 Set([0]) 1062.62982702 seconds
$

1200

1000

800

600

time(2*p-1)

400

200

7:26pm

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

20 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

3.25 Bibliography

[1] Garrett Birkhoff. Lattice Theory. Third edition. American Mathematical Society, Colloquium
publications, Volume XXV, 1973 (7, 2).

[2] Rod M. Burstall. “Proving properties of programs by structural induction” Computer Jour-
nal 12.1 (1969), pp. 41-48.

[3] David Cachera and David Pichardie. “Programmation d’un interpréteur abstrait certifié en
logique constructive”. Technique et Science Informatiques 30.4 (2011), pp. 381-408 (18).

[4] Noam Chomsky. “Three models for the description of language”. IRE Transactions on Infor-
mation Theory 2.3 (1956), pp. 113-124. URL: http://dx.doi.org/10.1109/TIT.1956.
1056813 (4, 1).

[5] Edmund M. Clarke, William Klieber, Milos Novéacek, and Paolo Zuliani. “Model Checking
and the State Explosion Problem”. In: LASER Summer School. Vol. 7682. Lecture Notes in
Computer Science. Springer, 2011, pp. 1-30 (16).

[6] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints” In: POPL.
ACM, 1977, pp. 238-252 (7, 4, 10, 9, 12, 15).

[7]1 Susanne Graf and Hassen Saidi. “Verifying Invariants Using Theorem Proving” In: CAV.
Vol. 1102. Lecture Notes in Computer Science. Springer, 1996, pp. 196-207 (18).

[8] Jacques-HenriJourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie.
“A Formally-Verified C Static Analyzer”. In: POPL. ACM, 2015, pp. 247-259 (18, 15, 13, 16).

[9] Gary A. Kildall. “A Unified Approach to Global Program Optimization” In: POPL. ACM
Press, 1973, pp. 194-206 (16, 4, 6, 1, 19, 12, 13, 22).

[10] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérome
Vouillon. “The OCaml system, release 4.04, Documentation and user’s manual”. Copyright
© 2013 Institut National de Recherche en Informatique et en Automatique. Nov. 2016 (17,
9,14).

[11] Peter Naur. “Generation of machine code in ALGOL compilers”. BIT 5.4 (1960), pp. 235-
245 (16).

[12] Peter Naur. “The design of the GIER ALGOL compiler”. BIT Numerical Mathematics 3 (June
1963), 124-140 and 145-166 (2).

[13] Peter Naur. “Checking of operand types in ALGOL compilers”. BIT Numerical Mathematics
5 (Sept. 1965), pp. 151-163 (2, 6, 1, 19).

[14] Kim Plofker. Mathematics in India. Princeton University Press, 2007 (1, 3).

[15] Dana S. Scott and Christopher Strachey. Towards a Mathematical Semantics for Computer
Languages. Technical report PRG-6. Oxford University Computer Laboratory, Aug. 1971,
p.49 (4,1,9, 3).

http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

3.25 Bibliography 21

[16] Michel Sintzoft. “Calculating Properties of Programs by Valuations on Specific Models”. In:
Proceedings of ACM Conference on Proving Assertions About Programs. ACM, 1972, pp. 203-
207 (2,6, 10, 1, 19).

[17] International Organization for Standardization. “ISO/IEC 19761: Software engineering —
COSMIC: a functional size measurement method”. Mar. 2011. URL: https://www.iso.
org/standard/54849.html (6).

https://www.iso.org/standard/54849.html
https://www.iso.org/standard/54849.html

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

22 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

Index of names

Brahmagupta, 1 Noam Chomsky, 4 Dana Scott, 4
Michel Sintzoff, 2
Rod Burstall, 5 Peter Naur, 2 Christopher Strachey, 4

23

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

24 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

MITPress NewMath.cls

IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

Index of cited authors

Birkhoff, Garrett, 7
Blazy, Sandrine, 18
Burstall, Rod M., 5

Cachera, David, 18
Chomsky, Noam, 4

Clarke, Edmund M., 16

Cousot, Patrick, 7
Cousot, Radhia, 7

Doligez, Damien, 17
Frisch, Alain, 17

Garrigue, Jacques, 17

Graf, Susanne, 18
Jourdan, Jacques-Henri, 18

Kildall, Gary A., 16
Klieber, William, 16

Laporte, Vincent, 18
Leroy, Xavier, 17, 18

Naur, Peter, 2, 16
Novacek, Milos, 16

Pichardie, David, 18

25

Plofker, Kim, 1, 3
Rémy, Didier, 17

Saidi, Hassen, 18

Scott, Dana S., 4

Sintzoff, Michel, 2

Standardization, International
Organization for, 6

Strachey, Christopher, 4

Vouillon, Jérome, 17

Zuliani, Paolo, 16

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

26 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

MITPress NewMath.cls

Index of concepts

abstract domain
sign _, 7
abstraction, 12
best , 11,12
sign _, 11,12
analysis
constancy _, 16
parity _, 15
sign _, 8
typing _, 16
associativity
left ,3

calculational design, 13
concretization, 12
constancy, 16
constant, 3

definition
compositional _, 4
structural _, 4, 5
design
empirical _, 15

IATEX Book Style

environment, 4
expression
arithmetic _, 3
semantics, 5
boolean _, 3
semantics, 5
semantics of _s, 5
syntax of _s, 3

Galois connection, 12, 13
grammar
_rule, 3

model checking, 16

OCaml programming
language, 17

proof
_ by recurrence, 5

_ by structural induction, 5, 7
_ of program properties, 7

properties

27

Size: 7x9 32pc text width

November 28, 2018

sign _, 7
property
expression _, 6
semantic _, 6
syntactic _, 6

semantics
collecting _, 6, 13
denotational _, 4
sign _, 8
sign, 1
_ concretization, 9, 12
_ lattice, 10
analysis, 2
ruleof _, 1
soundness, 9
strictness
bottom _, 8
syntax
_ of expressions, 3

variable
free , 4

7:26pm

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

28 Ch. 3 Syntax, semantics, properties, and static analysis of expressions

MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width November 28, 2018 7:26pm

Index of symbols

D, : sign abstract domain, 7 1. : bottom sign, 7
d : arithmetic expression semantics, 5 P+ (Ps, P2) ¢ sign concretization (pointwise), 9,
A : set of all arithmetic expressions, 3 12
/i): sign environment, 8
9B : boolean expression semantics, 5 L. : sign join, 11
B : set of all boolean expressions, 3 ~ ¢ sign minus, 7

<0: negative sign, 7
2. defined as, 4 <0: .strlctly negative sign, 7
C. (E.): sign partial order (pointwise), 10, 12
14 . . 20 : positive sign, 7
< : Galois connection, 12 P . g. T
o >0 : strictly positive sign, 7
o P* : concrete sign properties, 10
Z : mathematical integers, 4 8*: sign semantics, 8, 13

I*: sign bottom strictness, 8

- : arithmetic difference, 3 T, : top sign, 7

=0: zero sign, 7
nand: notand, 3 #0: non-zero sign, 7
T: notand, 5

V. set of all variables, 3
o.(d., &) : sign abstraction (pointwise), 11,12 vars: free variables of expressions, 4

29

	Bibliography
	Bibliography
	Bibliography
	Bibliography

