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Programme of the talk

Zonotopes = a swiss knife of numerical program analysis ?
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Outline of the talk

Zonotopes as a general purpose numerical abstract domain

Inspired from guaranteed numerical methods (affine arithmetic, Taylor methods)

A functional abstraction: parametrized sub-polyhedral abstraction with low
complexity (allows modular analysis, test generation, etc)

Set operations and a word on fixpoint computations

Good at expressing (and propagationg) perturbations

Used for assessing safety and robustness of neural networks (ETH Zurich)

Finite precision accuracy and robustness analysis (Fluctuat analyzer)

Possible extensions

An interesting representation of ellipsoids ?

Under-approximations

Mixed non-deterministic and probabilistic analysis
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Example: Householder scheme for square root approx

Householder
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Interval (boxes) abstraction and numerical abstract domains

Consider the rotation AΦb of an initial box b = [−1, 1]× [−1, 1], with

AΦ =
cos Φ sin Φ
− sin Φ cos Φ

The initial box is b, its exact image by the rotation is AΦb, and the best interval
abstraction A]

Φb

b

AΦb

A]
Φb

A typical example of the wrapping effect of the interval abstraction.

Many abstract domains aim at good compromise between cost and precision: linear
equalities, polyhedra, congruences, zones, octagons, templates, ellipsoids, gauges,
parallelotopes, etc

Often combined (reduced product)
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Affine Arithmetic (Comba & Stolfi 93) for real-numbers abstraction

Affine forms

Affine form for variable x:

x̂ = x0 + x1ε1 + . . .+ xnεn, xi ∈ R

where the εi are symbolic variables (noise symbols), with value in [−1, 1].

Sharing εi between variables expresses implicit dependency

Geometric concretization as zonotopes (center symmetric polytopes, huge literature)
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Affine arithmetic

Assignment x := [a, b] introduces a noise symbol:

x̂ =
(a + b)

2
+

(b − a)

2
εi .

Addition/subtraction are exact:

x̂ + ŷ = (x0 + y0) + (x1 + y1)ε1 + . . .+ (xn + yn)εn

Non linear operations : approximate linear form, new noise term bounding the
approximation error

x̂ × ŷ = x0y0 +
n∑

i=0

(x0yi + xiy0)εi +

 ∑
1≤i 6=j≤n

| xiyj |

 εn+1

(better approximations possible)

Close to Taylor models of low degree : low time complexity! and easy to implement
on a finite-precision machine
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Example (transformers are exact for affine operations)

Consider, with a ∈ [−1, 1] and b ∈ [−1, 1], the expressions

x = 1 + a + 2 ∗ b ;
y = 2 − a ;
z = x + y − 2 ∗ b ;

The representation as affine forms is x̂ = 1 + ε1 + 2ε2, ŷ = 2− ε1, with noise
symbols ε1, ε2 ∈ [−1, 1]

This implies x̂ ∈ [−2, 4], ŷ ∈ [1, 3] (same as Interval Arithmetic)

It also contains implicit relations, such as x̂ + ŷ = 3 + 2ε2 ∈ [1, 5] or

ẑ = x̂ + ŷ − 2b = 3

Whereas we get with intervals

z = x + y − 2b ∈ [−3, 9]
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Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

f (x1, . . . , xn) = f (0) +
n∑

i=1

∂f

∂xi
(0)xi + . . .
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Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

f (x1, . . . , xn) = f (0) +
n∑

i=1

∂f

∂xi
(0)xi +

n∑
i,j=1

1

2

∂2f

∂xi∂xj
(0)xixj + . . .
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Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

x̂ = x0 +
n∑

i=1

xiεi +
n∑

i,j=1

xi,jεiεj + [R]

(quadratic zonotopes Adje et al. 2015, etc)
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Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

x̂ = x0 +
n∑

i=1

xiεi +
n∑

i,j=1

xi,jεiεj + [R]

(quadratic zonotopes Adje et al. 2015, etc)

Both zonotopes and Taylor models are very successfully used in hybrid system
reachability analysis
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Numerical abstract domain (in short...) when not a lattice

Concretization-based analysis

Machine-representable abstract values X (affine sets)

A concretization function γf defining the set of concrete values represented by an
abstract value

A partial order on these abstract values, induced by γf :
X v Y ⇐⇒ γf (X ) ⊆ γf (Y )

Abstract transfer functions

Arithmetic operations: F is a sound abstraction of f iff

∀x ∈ γf (X ), f (x) ∈ γf (F (X ))

Set operations: join (∪), meet (∩), widening
no least upper bound / greatest lower bound on affine sets
(minimal) upper bounds / over-approximations of the intersection ...

and ... hopefully accurate and effective to compute!!!
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Concretization and order structure?

x = 20− 4ε1 + 2ε3 + 3ε4

y = 10− 2ε1 + ε2 − ε4

(
x
y

)
= AT


ε0 = 1
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ε2

ε3

ε4

 A =


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γ(A) = {ATε | ‖ε‖∞ ≤ 1}

“Geometric” order

A ≤ B ⇔ γ(A) ≤ γ(B)

For centered zonotopes: A ≤ B iff for all t ∈ Rp, ‖At‖1 ≤ ‖Bt‖1
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Functional order ?

Parameterization...is almost input-output relationship?

x = 20− 4ε1 + 2ε3 + 3ε4

Two kinds of noise symbols

Input noise symbols (εi ): created by uncertain inputs

Perturbation noise symbols (ηj): created by uncertainty in analysis

Affine sets X = (CX ,PX ) x̂1

x̂2

. . .
x̂p

 = CX T

 1
ε1

. . .
εn

+ PXT

 η1

η2

. . .
ηm


Central part links the current values of the program variables to the initial values of the
input variables (linear functional)

Perturbation part encodes the uncertainty in the description of values of program variables
due to non-linear computations (multiplication, join etc.)

Practical use for modular static analysis, test generation
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A simple example: functional interpretation

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of x : x = 5 + 5ε1

Abstraction of function x → y = x2 − x as

y = 32.5 + 50ε1 + 12.5η1
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A simple example: functional interpretation

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of x : x = 5 + 5ε1

Abstraction of function x → y = x2 − x as

y = 32.5 + 50ε1 + 12.5η1

= −17.5 + 10x + 12.5η1
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Functional order relation

Want an order that preserves the parametrization as input-output relationships.

Concretization in terms of sets of functions from Rn to Rp:

γf (X ) =

{
f : Rn → Rp | ∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m, f (ε) = CX T

(
1
ε

)
+ PXT

η

}
.

γf (X ) ⊆ γf (Y ) equivalent to

X v Y ⇐⇒ ∀u ∈ Rp , ‖(CY − CX )u‖1 ≤ ‖PY u‖1 − ‖PXu‖1

(implies the geometric ordering ‖CXu‖1 + ‖PXu‖1 ≤ ‖CY u‖1 + ‖PY u‖1)

In the general case, deciding inclusion means solving possibly many linear programs
(but can be avoided in practice)

Example

x1 = 2 + ε1, x2 = 2− ε1

x1 and x2 are incomparable
x̂

ε
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Concretization in terms of sets of functions from Rn to Rp:

γf (X ) =

{
f : Rn → Rp | ∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m, f (ε) = CX T

(
1
ε

)
+ PXT

η

}
.

γf (X ) ⊆ γf (Y ) equivalent to

X v Y ⇐⇒ ∀u ∈ Rp , ‖(CY − CX )u‖1 ≤ ‖PY u‖1 − ‖PXu‖1

(implies the geometric ordering ‖CXu‖1 + ‖PXu‖1 ≤ ‖CY u‖1 + ‖PY u‖1)

In the general case, deciding inclusion means solving possibly many linear programs
(but can be avoided in practice)

Example

x1 = 2 + ε1, x2 = 2− ε1 (geometric
concretization [1, 3])

x1 and x2 are incomparable

x̂

ε
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Functional order relation

Want an order that preserves the parametrization as input-output relationships.

Concretization in terms of sets of functions from Rn to Rp:

γf (X ) =

{
f : Rn → Rp | ∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m, f (ε) = CX T

(
1
ε

)
+ PXT

η

}
.

γf (X ) ⊆ γf (Y ) equivalent to

X v Y ⇐⇒ ∀u ∈ Rp , ‖(CY − CX )u‖1 ≤ ‖PY u‖1 − ‖PXu‖1

(implies the geometric ordering ‖CXu‖1 + ‖PXu‖1 ≤ ‖CY u‖1 + ‖PY u‖1)

In the general case, deciding inclusion means solving possibly many linear programs
(but can be avoided in practice)

Example

x1 = 2 + ε1, x2 = 2− ε1 , x3 = 2 + η1 (geometric
concretization [1, 3])

x1 and x2 are incomparable , both are included in
x3.

x̂

ε
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Set operations on affine sets / zonotopes: meet

Intersection of zonotopes are not zonotopes!

Interpreting conditionals

Translate the condition on noise symbols: constrained affine sets

Abstract domain for the noise symbols: intervals, octagons, etc.

Equality tests are interpreted by the substitution of one noise symbol of the
constraint (also summary instantiation for modular analysis)

Arithmetic operations carry over nicely to this logical/reduced product
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Example

Example

real x = [0,10]; real y = 2*x;

if (y >= 10) y = x;

Affine forms before tests: x = 5 + 5ε1, y = 10 + 10ε1

In the if branch ε1 ≥ 0: condition acts on both x and y
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Join operator

(
x̂ = 3 + ε1 + 2ε2

û = 0 + ε1 + ε2

)
∪
(

ŷ = 1− 2ε1 + ε2

û = 0 + ε1 + ε2

)
=

(
x̂ ∪ ŷ = 2 + ε2 + 3η1

û = 0 + ε1 + ε2

)

x̂ , ŷ

û

Construction (low complexity!: O(n × p))

Keep “minimal common dependencies”

zi = argmin
xi∧yi≤r≤xi∨yi

|r |, ∀i ≥ 1

For each dimension, concretization is the interval union of the concretizations:
γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ)

A minimal upper bound under some conditions (several uncomparable minimal upper
boundsin general)
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Convergence schemes

Fixpoint computation

Given a continuous upper-bound operator U, the U-iteration scheme for a strict,
continuous functional F on affine sets (extended with a formal ⊥ and >), is as follows:

Start with X0 = ⊥
Then iterate: Xu+1 = XuUF (Xu)

if Xu+1 ≤ Xu then stop with Xu

if γ(Xu+1) 6⊆ I p , then end with > (or any thresholding mechanism...)

Stopping criterion

Test Xu+1 ≤ Xu guarantees that Xu is a post-fixed point of F , but is costly

We can use simpler componentwise geometrical inclusion, and have the full test only
when the simpler test is satisfied

We can use the fact that a particular join operator is used

In practice

Initial unfolding - i.e. start fp solving at some F l(⊥)

Cyclic unfolding - i.e. compute fp(F k) ∪ F (fp(F k)) ∪ . . .F k−1(fp(F k))
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Convergence results: from concrete to abstract

General result on recursive linear filters, pervasive in embedded programs:

xk+n+1 =
n∑

i=1

aixk+i +
n+1∑
j=1

bjek+j , e[∗] = input(m,M);

Suppose this concrete scheme has bounded outputs (zeros of xn −
∑n−1

i=0 ai+1x
i have

modules stricty lower than 1).

Then there exists q such that the Kleene abstract scheme “unfolded modulo q”
converges towards a finite over-approximation of the outputs

X̂i = X̂i−1 ∪ f q(Ei , . . . ,Ei−k , X̂i−1, . . . , X̂i−k)

in finite time, potentially with a widening partly losing dependency information
The abstract scheme is a perturbation (by the join operation) of the concrete scheme
Proof uses the stability property of our join operator: for each dimension
γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ) and f q ”contractive enough” for some q
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Illustration: a simple order 2 filter

Sn+2 = 0.7En+2 − 1.3En+1 + 1.1En + 1.4Sn+1 − 0.7Sn

Step 0: initial unfolding (10)+first cyclic unfolding (80) - first join
Step 1: After first join, perturbation of the original numerical scheme!
Step 2: second cyclic unfolding, contracting back - second join and post-fixpoint
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Illustration: a simple order 2 filter

Sn+2 = 0.7En+2 − 1.3En+1 + 1.1En + 1.4Sn+1 − 0.7Sn

A polyhedral approximation of the classical ellipsoidal invariant

May be inefficient, for convergence, q depending on the largest eigenvalue module

mixed zonotopic/ellipsoidal invariants ?
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Ellipsoidal domains

Long history

Kurzhanski in Control Theory (1991), Feret (ESOP 2004), Cousot (VMCAI 2005), Adjé
et al. (ESOP 2010), Gawlitza et al. (SAS 2010), Garoche et al. (HSCC 2012) etc.

Extend affine forms to ellipsoidal forms ? Change of norm (norm l2, or lp...

x̂ = x0 +
n∑

i=1

xiεi , with ‖ε‖∞ = sup
i=1,...,n

| εi | ≤ 1

x = 20− 4ε1 + 2ε3 + 3ε4

y = 10− 2ε1 + ε2 − ε4

x

y

10 15 20 25 30
5

10

15
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Ellipsoidal domains

Long history

Kurzhanski in Control Theory (1991), Feret (ESOP 2004), Cousot (VMCAI 2005), Adjé
et al. (ESOP 2010), Gawlitza et al. (SAS 2010), Garoche et al. (HSCC 2012) etc.

Extend affine forms to ellipsoidal forms ? Change of norm (norm l2, or lp...

x̂ = x0 +
n∑

i=1

xiεi , with ‖ε‖2 =

√√√√ n∑
i=1

ε2
i ≤ 1

x = 20− 4ε1 + 2ε3 + 3ε4

y = 10− 2ε1 + ε2 − ε4
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Ellipsoidal domains

Long history

Kurzhanski in Control Theory (1991), Feret (ESOP 2004), Cousot (VMCAI 2005), Adjé
et al. (ESOP 2010), Gawlitza et al. (SAS 2010), Garoche et al. (HSCC 2012) etc.

Extend affine forms to ellipsoidal forms ? Change of norm (norm l2, or lp...

x̂ = x0 +
n∑

i=1

xiεi , with ‖ε‖2 =

√√√√ n∑
i=1

ε2
i ≤ 1

Functional order

X ⊆ Y if and only if for all t ∈ Rp

‖(CX − CY )t‖2 ≤ ‖P
Y t‖2 − ‖P

X t‖2
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Some references

[CAV 2009] K. Ghorbal, E. Goubault and S. Putot, The Zonotope Abstract Domain
Taylor1+ (upper bounds, fixpoint computations, implementation in the Apron
library)

[CAV 2010] K. Ghorbal, E. Goubault and S. Putot, A Logical Product to Zonotope
Intersection (interpretation of conditionals - also a variation in: Automatica 2016,
Constrained zonotopes: A new tool for set-based estimation and fault detection,
Scott, Raimondo, Marseglia, Braatz)

[SAS 2012] E. Goubault, S. Putot and F. Védrine, Modular Static Analysis with
Zonotopes

[NSAD 2012] E. Goubault, T. Le Gall and S. Putot, An Accurate Join for
Zonotopes, Preserving Affine Input/Output Relations

[FMSD 2016] E. Goubault and S. Putot, A zonotopic framework for functional
abstractions (extended version with full abstraction, older versions with more details
Arxiv 2008 and Arxiv 2009)
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Use of zonotopes for the verification of neural networks

Convolutional neural networks analysis

Composition of conditional affine transformations and non-affine activation functions (for
example ReLU(x)=max(x,0), etc)

affine transformations are exactly and efficiently represented in zonotopes

activation function has to be abstracted

Work at ETH Zurich: several articles on abstract interpretation of such networks using
zonotopes, for example

[IEEE S&P 2018] AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation, T Gehr, M Mirman, D Drachsler-Cohen, P Tsankov, S
Chaudhuri, M Vechev

But ... their most recent work (DeepPoly) relying on polyhedra outperforms their
previous one with zonotopes! ([POPL 2019] An Abstract Domain for Certifying Neural
Networks, G Singh, T Gehr, M Püschel, M Vechev)
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Outline of the talk

Zonotopes as a general purpose numerical abstract domain

Inspired from guaranteed numerical methods (affine arithmetic, Taylor methods)

A functional abstraction: parametrized sub-polyhedral abstraction with low
complexity (allows modular analysis, test generation, etc)

Set operations and a word on fixpoint computations

Good at expressing (and propagationg) perturbations

Used for assessing safety and robustness of neural networks (ETH Zurich)

Finite precision accuracy and robustness analysis (Fluctuat analyzer)

Possible extensions

An interesting representation of ellipsoids ?

Under-approximations

Mixed non-deterministic and probabilistic analysis
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FLUCTUAT: concrete semantics

IEEE 754 norm on f.p. numbers specifies the rounding error (same is feasible for
fixed point semantics)

Aim: compute rounding errors and their propagation
we need the floating-point values
relational (thus accurate) analysis more natural on real values
for each variable, we compute (f x , rx , ex )
then we will abstract each term (real value and errors)

f l o a t x , y , z ;
x = 0 . 1 ; // [ 1 ]
y = 0 . 5 ; // [ 2 ]
z = x+y ; // [ 3 ]
t = x∗ z ; // [ 4 ]

f x = 0.1 + 1.49e−9 [1]

f y = 0.5

f z = 0.6 + 1.49e−9 [1] + 2.23e−8 [3]

f t = 0.06 + 1.04e−9 [1] + 2.23e−9 [3]− 8.94e−10 [4]− 3.55e−17 [ho]
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Example (Fluctuat)
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Abstraction in Fluctuat

Abstract value

For each variable x , a triplet (f x , r x , ex):

Interval fx = [f x , f x ] bounds the finite prec value, (f x , f x ) ∈ F× F,
Affine forms for real value and error; for simplicity no η symbols

f x = (αx
0 +

⊕
i

αx
i ε

r
i )

︸ ︷︷ ︸
real value

+( ex0︸︷︷︸
center of the error

+
⊕
l

exl ε
e
l︸ ︷︷ ︸

uncertainty on error due to point l

+
⊕
i

mx
i ε

r
i︸ ︷︷ ︸

propag of uncertainty on value at pt i

)

Constraints on noise symbols (interval + equality constraints)
for finite precision control flow
for real control flow
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Second order filters

Filters
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Back to the Householder scheme

Householder
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Control flow problems!

Unstable tests: when real and finite precision control flow can be different

Error analyses are sound only under the stable test assumption

When considering large sets of executions, most tests are unstable

Compute discontinuity error bounds due to unstable tests:
makes our error analysis sound in the presence of unstable tests
gives a robustness analysis of implementations (in line with work on
continuity/robustness analysis of Chaudhuri Gulwani POPL 2010, Majumbar RTSS
2009 etc.)
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A typical example of unstable tests: affine interpolators

All tests are unstable, but the implementation is robust, the conditional block does not
introduce a discontinuity
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But actual discontinuities also occur (sqrt qpproximation)
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Abstract domain in Fluctuat

Abstract value at each control point c

For each variable, affine forms for real value and error:

f x = (αx
0 +

⊕
i

αx
i ε

r
i )

︸ ︷︷ ︸
real value

+( ex0︸︷︷︸
center of the error

+
⊕
l

exl ε
e
l︸ ︷︷ ︸

uncertainty on error due to point l

+
⊕
i

mx
i ε

r
i︸ ︷︷ ︸

propag of uncertainty on value at pt i

)

Constraints on noise symbols coming from interpretation of test condition
εr ∈ ΦX

r for real control flow (test on the rx : constraints on the εri )

(εr , εe) ∈ ΦX
f for finite precision control flow (test on the f x = rx + ex : constraints on

the εri and εel )

Unstable test condition = intersection of constraints εr ∈ ΦX
r u ΦY

f :

unstable test: for a same execution (same values of the noise symbols εi ) the control
flow is different

restricts the range of the εi : allows us to bound accurately the discontinuity error
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Formally, sound abstraction (with discontinuity errors)

Abstract value

An abstract value X , for a program with p variables x1, . . . , xp, is a tuple
X = (RX ,EX ,DX ,ΦX

r ,Φ
X
f ) composed of the following affine sets and constraints, for all

k = 1, . . . , p:
RX : r̂Xk = rX0,k +

∑n
i=1 r

X
i,k ε

r
i where εr ∈ ΦX

r

EX : êXk = eX0,k +
∑n

i=1 e
X
i,k ε

r
i +
∑m

j=1 e
X
n+j,k ε

e
j where (εr , εe) ∈ ΦX

f

DX : d̂X
k = dX

0,k +
∑o

i=1 d
X
i,k ε

d
i

f̂ Xk = r̂Xk + êXk where (εr , εe) ∈ ΦX
f

EX is the propagated rounding error, DX the propagated discontinuity error

New discontinuity errors computed when joining branches of a possibly unstable test

Z = X t Y is Z = (RZ ,EZ ,DZ ,ΦX
r ∪ ΦY

r ,Φ
X
f ∪ ΦY

f ) such that
(RZ ,ΦZ

r ∪ ΦZ
f ) = (RX ,ΦX

r ∪ ΦX
f ) t (RY ,ΦY

r ∪ ΦY
f )

(EZ ,ΦZ
f ) = (EX ,ΦX

f ) t (EY ,ΦY
f )

DZ = DX t DY t (RX − RY ,ΦX
f u ΦY

r ) t (RY − RX ,ΦY
f u ΦX

r )
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Example: sound unstable test analysis

i n t main ( v o i d ) {
d o u b l e x , y ;
x = DREAL WITH ERROR ( 1 , 3 , 1 . 0 e−5 ,1.0 e−5);
i f ( x <= 2)

y = x + 2 ; [ 1 ]
e l s e

y = x ; [ 2 ]
}

Before the test: f x = (2 + ε1) + 10−5

Test x ≤ 2:
in reals: ε1 ≤ 0
in floats: ε1 + 1.0e−5 ≤ 0, ie ε1 ≤ −1.0e−5.

First unstable test possibility :
real takes then branch: ε1 ≤ 0
float takes else branch: ε1 > −1.0e−5

unstable test = intersection of constraints: −1.0e−5 < ε1 ≤ 0

f y[2] − r y[1] = (2 + ε1 + 1.0e−5)− (4 + ε1) = −2 + 1.0e−5.

Second unstable test possibility: conditions ε1 ≤ −1.0e−5 and ε1 > 0 are non
compatible (no unstable test)
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Householder algorithm for square root
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Some references

Latest abstractions in Fluctuat

[APLAS 2013] E. Goubault and S. Putot, Robustness analysis of finite precision
implementations (handling unstable tests)

[VMCAI 2011] E. Goubault and S.Putot, Static Analysis of Finite Precision
Computations (full zonotopic abstraction with stable test assumption)

Case studies

on industrial code, mostly control code (nuclear plants, automotive industry, aeronautics
and space industry etc.)

[FMICS 2009] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal and F.
Vedrine, Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics
Software

[FMICS 2007] E. Goubault, S. Putot, P. Baufreton and J. Gassino, Static Analysis of
the Accuracy in Control Systems : Principles and Experiments (nuclear safety
applications)
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Possible extensions of affine sets / zonotopes

Keep same parameterization x =
∑

i xiεi but with

Interval/zonotopic coefficients xi : generalized affine sets for under-approximation
under-approximation = sets of variables values, that are sure to be reached for some
inputs in the specified ranges
using Kaucher arithmetic extending interval arithmetic over generalized intervals
[SAS 2007] E. Goubault and S. Putot, Under-Approximations of Computations in Real
Numbers Based on Generalized Affine Arithmetic
But also for hybrid systems reachability analysis (VMCAI talk on Sunday!)

Noise symbols εi no longer simply defined as ranging in intervals:
ellipsoids: ‖ε‖2 ≤ 1 (instead of ‖ε‖∞ ≤ 1)
probabilistic affine forms: εi take values in probability boxes
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Motivation for a probabilistic extension to affine forms

Typical problem

Some inputs known to lie in sets (non-deterministic inputs), and some a probability
distribution (probabilistic inputs)

for example, temperature distribution known but we only know a range for pressure, in
some software-driven apparatus

Inputs may be thought of as given by imprecise probabilities

Discrete p-boxes or Dempster-Shafer structures

Generalize probability distributions and interval computations

Represent sets of probability distributions: between an upper and a lower Cumulative
Distribution Function P(X ≤ x)

−1 −0.5 0.25 0.5 1 2

1
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Example: recursive filter with independent inputs in [-1,1]

Prove that dangerous worst case occur with very low probability

Deterministic analysis (left): outputs in [-3.25,3.25] (exact)

Mixed probabilistic/deterministic analysis (right): outputs in [-3.25,3.25], and in
[-1,1] with very strong probability (in fact, very close to a Gaussian distribution)
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Based on Dempster-Shafer structures (1976)

Based on a notion of focal elements (∈ F - here F is a set of subsets of R):
sets of non-deterministic events/values - here sub-intervals of values in [-1,1]

Weights (positive reals) associated to focal elements (w : F → R+)

probabilistic information
available on the belonging
to the focal elements, not
to precise events

equivalent to having
staircase upper and lower
probabilities −1 −0.5 0.25 0.5 1 2

1

Example:

d = {〈[−1, 0.25], 0.1〉, 〈[−0.5, 0.5], 0.2〉, 〈[0.25, 1], 0.3〉,
〈[0.5, 1], 0.1〉, 〈[0.5, 2], 0.1〉, 〈[1, 2], 0.2〉}

represents the set of probability distributions with support [−1, 2], where the probability
of picking a value between -1 and 0.25 is 0.1, the probability of picking a value between
-0.5 and 0.5 is 0.2 etc.
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Some computation rules: z = x�y (�=+,-,×,/ etc.)

Independent variables x , y

x (resp. y) given by focal elements F x (resp. F y ) and weights w x (resp. w y )

Define DS for z : F z = {f x�f y | f x ∈ FX , f y ∈ F y} and
w z(f x�f y ) = w x(f x)w y (f y ) (and renormalize)

Example

x with F x = {[−1, 0], [0, 1]}, w x([−1, 0]) = w x([0, 1]) = 1
2

(approximation of
uniform distribution on [-1,1])

y with F y = {[−2, 0], [0, 2]}, w y ([−2, 0]) = w y ([0, 2]) = 1
2

x ; y [-2,0], 1
2

[0,2], 1
2

[-1,0], 1
2

[-3,0], 1
4

[-1,2], 1
4

[0,1], 1
2

[-2,1], 1
4

[0,3], 1
4

CDF of x CDF of x + y

Dependent variables: more costly and imprecise operations
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Our approach

Encode as much deterministic dependencies as possible by affine arithmetic

Sn+2 = 0.7En+2 − 1.3En+1 + 1.1En independent values
+1.4Sn+1 − 0.7Sn linear dependancy

because arithmetic on dependent p-boxes / DS is not very efficient

P-forms (probabilistic affine forms)

Associate a Dempster-Shafer structure to each noise symbol

εi independent of each other, created by inputs

ηj unknown dependencies with each other and with the εi , created by non-linear
computation (including branching)

use of Frechet bounds when dependencies are unknown, easier calculus when
variables are known to be independent

both more accurate and faster than direct DS arithmetic
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Example: Ferson polynomial

Example from Enszer, J.A., Lin, Y., Ferson, S., Corliss, G.F., Stadtherr, M.A.,
“Probability bounds analysis for nonlinear dynamic process models”

Goal: compute bounds on the solution of the differential equations

ẋ1 = θ1x1(1− x2) ẋ2 = θ2x2(x1 − 1)

with initial values x1(0) = 1.2 and x2(0) = 1.1 and uncertain parameters θ1, θ2 given
by a normal distribution with mean 3 and 1, resp., but with an unknown standard
deviation in the range [−0.01, 0.01]

Results with our probabilistic affine forms:

2.99 3 3 3.01
0

0.5

1

1.12 1.14 1.16
0

0.5

1

θ1 x1

Application: we can, with high probability, discard some values in the resulting
interval. For example, we could show that P(x1 ≤ 1.13) ≤ 0.0552
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References
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Sankaranarayanan, Uncertainty Propagation using Probabilistic Affine Forms and
Concentration of Measure Inequalities,

Application to the analysis of finite precision decision-making programs:

[EMSOFT 2018] E. Darulova, E. Goubault, D. Lohar, S. Putot, Discrete Choice in
the Presence of Numerical Uncertainties
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Implementations of zonotope abstract domains

Zonotope abstract domain

Implemented by K. Ghorbal in the APRON library
(http://apron.cri.ensmp.fr/library/, domain named Taylor1+)

Also some version in Elina http://elina.ethz.ch (used for neural network analysis)

Application in tools for finite precision analysis

Academic version of FLUCTUAT (proprietary tool of CEA) (can be used through an
API from an other analyzer)

Rosa (TOPLAS 2017, Towards a Compiler for Reals, E. Darulova, V. Kuncak, also
relies on affine arithmetic), Daisy (TACAS 2018 Framework for Analysis and
Optimization of Numerical Programs, E. Darulova, A Izycheva, F. Nasir, F. Ritter,
H. Becker, and R. Bastian)

PRECiSA (VMCAI 2018, An Abstract Interpretation Framework for the Round-Off
Error Analysis of Floating-Point Programs), also uses affine arithmetic among other
abstractions
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