Zonotopic abstract domains for numerical program analysis

Sylvie Putot
Joint work with Eric Goubault
LIX, Ecole Polytechnique

VMCAI Winter School, January 11, 2019
Programme of the talk

Zonotopes = a swiss knife of numerical program analysis?
Outline of the talk

Zonotopes as a general purpose numerical abstract domain

- Inspired from guaranteed numerical methods (affine arithmetic, Taylor methods)
- A functional abstraction: parametrized sub-polyhedral abstraction with low complexity (allows modular analysis, test generation, etc)
- Set operations and a word on fixpoint computations

Good at expressing (and propagation) perturbations

- Used for assessing safety and robustness of neural networks (ETH Zurich)
- Finite precision accuracy and robustness analysis (Fluctuat analyzer)

Possible extensions

- An interesting representation of ellipsoids?
- Under-approximations
- Mixed non-deterministic and probabilistic analysis
Example: Householder scheme for square root approx
Consider the rotation $A_\Phi b$ of an initial box $b = [-1, 1] \times [-1, 1]$, with

$$A_\Phi = \begin{bmatrix} \cos \Phi & \sin \Phi \\ -\sin \Phi & \cos \Phi \end{bmatrix}$$

The initial box is b, its exact image by the rotation is $A_\Phi b$, and the best interval abstraction $A_\Phi^\# b$

- A typical example of the \textit{wrapping effect} of the interval abstraction.
- Many abstract domains aim at good compromise between cost and precision: linear equalities, polyhedra, congruences, zones, octagons, templates, ellipsoids, gauges, paralleloptopes, etc
- Often combined (reduced product)
Affine Arithmetic (Comba & Stolfi 93) for real-numbers abstraction

Affine forms

- Affine form for variable x:
 \[\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n, \quad x_i \in \mathbb{R} \]
 where the ε_i are symbolic variables (noise symbols), with value in $[-1, 1]$.

- Sharing ε_i between variables expresses implicit dependency

Geometric concretization as zonotopes (center symmetric polytopes, huge literature)

\[\hat{x} = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4 \]
\[\hat{y} = 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4 \]
Affine arithmetic

- **Assignment** $x := [a, b]$ introduces a noise symbol:

 \[\hat{x} = \frac{(a + b)}{2} + \frac{(b - a)}{2} \varepsilon_i. \]

- **Addition/subtraction** are exact:

 \[\hat{x} + \hat{y} = (x_0 + y_0) + (x_1 + y_1)\varepsilon_1 + \ldots + (x_n + y_n)\varepsilon_n \]

- **Non linear operations**: approximate linear form, new noise term bounding the approximation error

 \[\hat{x} \times \hat{y} = x_0 y_0 + \sum_{i=0}^{n} (x_0 y_i + x_i y_0)\varepsilon_i + \left(\sum_{1 \leq i \neq j \leq n} |x_i y_j| \varepsilon_{n+1} \right) \]

 (better approximations possible)

- Close to Taylor models of low degree: low time complexity! and easy to implement on a finite-precision machine
Consider, with \(a \in [-1, 1] \) and \(b \in [-1, 1] \), the expressions

\[
\begin{align*}
x &= 1 + a + 2 \times b; \\
y &= 2 - a; \\
z &= x + y - 2 \times b;
\end{align*}
\]

- The representation as affine forms is \(\hat{x} = 1 + \varepsilon_1 + 2\varepsilon_2 \), \(\hat{y} = 2 - \varepsilon_1 \), with noise symbols \(\varepsilon_1, \varepsilon_2 \in [-1, 1] \)
- This implies \(\hat{x} \in [-2, 4], \hat{y} \in [1, 3] \) (same as Interval Arithmetic)
- It also contains implicit relations, such as \(\hat{x} + \hat{y} = 3 + 2\varepsilon_2 \in [1, 5] \) or \(\hat{z} = \hat{x} + \hat{y} - 2b = 3 \)
- Whereas we get with intervals

\[
z = x + y - 2b \in [-3, 9]
\]
Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

\[f(x_1, \ldots, x_n) = f(0) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(0)x_i + \ldots \]
Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

\[f(x_1, \ldots, x_n) = f(0) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(0)x_i + \sum_{i,j=1}^{n} \frac{1}{2} \frac{\partial^2 f}{\partial x_i \partial x_j}(0)x_i x_j + \ldots \]
Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

\[
\hat{x} = x_0 + \sum_{i=1}^{n} x_i \varepsilon_i + \sum_{i,j=1}^{n} x_{i,j} \varepsilon_i \varepsilon_j + [R]
\]

(quadratic zonotopes Adje et al. 2015, etc)
Taylor models

Very appealing model...part of a bigger picture

Taylor models approximate variables values by polynomial plus remainder:

\[
\hat{x} = x_0 + \sum_{i=1}^{n} x_i \varepsilon_i + \sum_{i,j=1}^{n} x_{i,j} \varepsilon_i \varepsilon_j + [R]
\]

(quadratic zonotopes Adje et al. 2015, etc)

Both zonotopes and Taylor models are very successfully used in hybrid system reachability analysis
Numerical abstract domain (in short...) when not a lattice

Concretization-based analysis

- Machine-representable abstract values X (affine sets)
- A concretization function γ_f defining the set of concrete values represented by an abstract value
- A partial order on these abstract values, induced by γ_f: $X \sqsubseteq Y \iff \gamma_f(X) \subseteq \gamma_f(Y)$

Abstract transfer functions

- Arithmetic operations: F is a sound abstraction of f iff
 $$\forall x \in \gamma_f(X), \ f(x) \in \gamma_f(F(X))$$

- Set operations: join (\cup), meet (\cap), widening
 - no least upper bound / greatest lower bound on affine sets
 - (minimal) upper bounds / over-approximations of the intersection ...

and ... hopefully accurate and effective to compute!!!
Concretization and order structure?

\[
\begin{align*}
x &= 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4 \\
y &= 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4
\end{align*}
\]

\[
\begin{pmatrix}
x \\
y
\end{pmatrix} = A^T \begin{pmatrix}
\varepsilon_0 = 1 \\
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
20 & 10 \\
-4 & -2 \\
0 & 1 \\
2 & 0 \\
3 & -1
\end{pmatrix}
\]

\[
\gamma(A) = \{ A^T \varepsilon \mid \|\varepsilon\|_\infty \leq 1 \}
\]

“Geometric” order

\[
A \leq B \iff \gamma(A) \leq \gamma(B)
\]

For centered zonotopes: \(A \leq B \) iff for all \(t \in \mathbb{R}^p \), \(\|At\|_1 \leq \|Bt\|_1 \)
Functional order?

Parameterization...is almost input-output relationship?

\[x = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4 \]

Two kinds of noise symbols

- Input noise symbols \((\varepsilon_i)\): created by uncertain inputs
- Perturbation noise symbols \((\eta_j)\): created by uncertainty in analysis

Affine sets \(X = (C^X, P^X)\)

\[
\begin{pmatrix}
\hat{x}_1 \\
\hat{x}_2 \\
\vdots \\
\hat{x}_p \\
\end{pmatrix} = C^X^T \begin{pmatrix}
1 \\
\varepsilon_1 \\
\vdots \\
\varepsilon_n \\
\end{pmatrix} + P^X^T \begin{pmatrix}
\eta_1 \\
\eta_2 \\
\vdots \\
\eta_m \\
\end{pmatrix}
\]

- **Central part** links the current values of the program variables to the initial values of the input variables (linear functional)
- **Perturbation part** encodes the uncertainty in the description of values of program variables due to non-linear computations (multiplication, join etc.)
- **Practical use** for modular static analysis, test generation
A simple example: functional interpretation

```plaintext
real x = [0, 10];
real y = x*x - x;
```

Abstraction of \(x \): \(x = 5 + 5\varepsilon_1 \)

Abstraction of function \(x \rightarrow y = x^2 - x \) as

\[
y = 32.5 + 50\varepsilon_1 + 12.5\eta_1
\]
A simple example: functional interpretation

\[
\begin{align*}
\text{real } x & = [0, 10]; \\
\text{real } y & = x \times x - x;
\end{align*}
\]

Abstraction of \(x \): \(x = 5 + 5\varepsilon_1 \)

Abstraction of function \(x \rightarrow y = x^2 - x \) as

\[
\begin{align*}
y & = 32.5 + 50\varepsilon_1 + 12.5\eta_1 \\
& = -17.5 + 10x + 12.5\eta_1
\end{align*}
\]
Functional order relation

Want an order that preserves the parametrization as input-output relationships.

Concretization in terms of sets of functions from \mathbb{R}^n to \mathbb{R}^p:

$$\gamma_f(X) = \left\{ f : \mathbb{R}^n \rightarrow \mathbb{R}^p \mid \forall \epsilon \in [-1, 1]^n, \exists \eta \in [-1, 1]^m, f(\epsilon) = C^X^T \begin{pmatrix} 1 \\ \epsilon \end{pmatrix} + P^X^T \eta \right\}.$$

- $\gamma_f(X) \subseteq \gamma_f(Y)$ equivalent to

$$X \subseteq Y \iff \forall u \in \mathbb{R}^p, \| (C^Y - C^X) u \|_1 \leq \| P^Y u \|_1 - \| P^X u \|_1$$

(implies the geometric ordering $\| C^X u \|_1 + \| P^X u \|_1 \leq \| C^Y u \|_1 + \| P^Y u \|_1$)

- In the general case, deciding inclusion means solving possibly many linear programs (but can be avoided in practice)

Example

- $x_1 = 2 + \epsilon_1$, $x_2 = 2 - \epsilon_1$
- x_1 and x_2 are incomparable
Functional order relation

Want an order that preserves the parametrization as input-output relationships.

Concretization in terms of sets of functions from \mathbb{R}^n to \mathbb{R}^p:

$$\gamma_f(X) = \left\{ f : \mathbb{R}^n \to \mathbb{R}^p \mid \forall \epsilon \in [-1, 1]^n, \exists \eta \in [-1, 1]^m, f(\epsilon) = C^X \begin{pmatrix} 1 \\ \epsilon \end{pmatrix} + P^X \eta \right\}.$$

- $\gamma_f(X) \subseteq \gamma_f(Y)$ equivalent to

 $$X \subseteq Y \iff \forall u \in \mathbb{R}^p, \| (C^Y - C^X)u \|_1 \leq \| P^Y u \|_1 - \| P^X u \|_1$$

 (implies the geometric ordering $\| C^X u \|_1 + \| P^X u \|_1 \leq \| C^Y u \|_1 + \| P^Y u \|_1$)

- In the general case, deciding inclusion means solving possibly many linear programs (but can be avoided in practice)

Example

- $x_1 = 2 + \epsilon_1$, $x_2 = 2 - \epsilon_1$ (geometric concretization $[1, 3]$)
- x_1 and x_2 are incomparable
Functional order relation

Want an order that preserves the parametrization as input-output relationships.

Concretization in terms of sets of functions from \mathbb{R}^n to \mathbb{R}^p:

$$\gamma_f(X) = \left\{ f : \mathbb{R}^n \to \mathbb{R}^p \mid \forall \varepsilon \in [-1, 1]^n, \exists \eta \in [-1, 1]^m, f(\varepsilon) = C^X \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix} + P^X \eta \right\}.$$

- $\gamma_f(X) \subseteq \gamma_f(Y)$ equivalent to
 $$X \subseteq Y \iff \forall u \in \mathbb{R}^p, \|C^Y - C^X\|_1 u \leq \|P^Y u\|_1 - \|P^X u\|_1$$

 (implies the geometric ordering $\|C^X u\|_1 + \|P^X u\|_1 \leq \|C^Y u\|_1 + \|P^Y u\|_1$)

- In the general case, deciding inclusion means solving possibly many linear programs (but can be avoided in practice)

Example

- $x_1 = 2 + \varepsilon_1, x_2 = 2 - \varepsilon_1, x_3 = 2 + \eta_1$ (geometric concretization $[1, 3]$)

- x_1 and x_2 are incomparable, both are included in x_3.

\[\varepsilon \]
Set operations on affine sets / zonotopes: meet

Intersection of zonotopes are not zonotopes!

Interpreting conditionals

- Translate the condition on noise symbols: constrained affine sets
- Abstract domain for the noise symbols: intervals, octagons, etc.
- Equality tests are interpreted by the substitution of one noise symbol of the constraint (also summary instantiation for modular analysis)
- Arithmetic operations carry over nicely to this logical/reduced product
Example

real \(x = [0,10] \); real \(y = 2 \times x \);
if \(y \geq 10 \) \(y = x \);

- Affine forms before tests: \(x = 5 + 5\varepsilon_1 \), \(y = 10 + 10\varepsilon_1 \)
- In the if branch \(\varepsilon_1 \geq 0 \): condition acts on both \(x \) and \(y \)
Join operator

\[
\left(\begin{array}{c}
\hat{x} = 3 + \varepsilon_1 + 2\varepsilon_2 \\
\hat{u} = 0 + \varepsilon_1 + \varepsilon_2
\end{array} \right) \cup \left(\begin{array}{c}
\hat{y} = 1 - 2\varepsilon_1 + \varepsilon_2 \\
\hat{u} = 0 + \varepsilon_1 + \varepsilon_2
\end{array} \right) = \left(\begin{array}{c}
\hat{x} \cup \hat{y} = 2 + \varepsilon_2 + 3\eta_1 \\
\hat{u} = 0 + \varepsilon_1 + \varepsilon_2
\end{array} \right)
\]

Construction (low complexity!: $O(n \times p)$)

- Keep “minimal common dependencies”

\[
z_i = \arg\min_{x_i \land y_i \leq r \leq x_i \lor y_i} |r|, \ \forall i \geq 1
\]

- For each dimension, concretization is the interval union of the concretizations:
 \[
 \gamma(\hat{x} \cup \hat{y}) = \gamma(\hat{x}) \cup \gamma(\hat{y})
 \]

- A minimal upper bound under some conditions (several uncomparable minimal upper bounds in general)
Join operator

\[
\left(\hat{x} = 3 + \varepsilon_1 + 2\varepsilon_2 \right) \cup \left(\hat{y} = 1 - 2\varepsilon_1 + \varepsilon_2 \right) = \left(\hat{x} \cup \hat{y} = 2 + \varepsilon_2 + 3\eta_1 \right)
\]

\[
\hat{x} = 0 + \varepsilon_1 + \varepsilon_2
\]

\[
\hat{y} = 0 + \varepsilon_1 + \varepsilon_2
\]

Construction (low complexity!): \(\mathcal{O}(n \times p) \)

- Keep “minimal common dependencies”

\[
z_i = \arg\min_{x_i \wedge y_i \leq r \leq x_i \vee y_i} |r|, \ \forall i \geq 1
\]

- For each dimension, concretization is the interval union of the concretizations:

\[
\gamma(\hat{x} \cup \hat{y}) = \gamma(\hat{x}) \cup \gamma(\hat{y})
\]

- A minimal upper bound under some conditions (several uncomparable minimal upper bounds in general)
Convergence schemes

Fixpoint computation

Given a continuous upper-bound operator U, the U-iteration scheme for a strict, continuous functional F on affine sets (extended with a formal \bot and \top), is as follows:

- Start with $X_0 = \bot$
- Then iterate: $X_{u+1} = X_u U F(X_u)$
 - if $X_{u+1} \leq X_u$ then stop with X_u
 - if $\gamma(X_{u+1}) \not\subseteq I^p$, then end with \top (or any thresholding mechanism...)

Stopping criterion

Test $X_{u+1} \leq X_u$ guarantees that X_u is a post-fixed point of F, but is costly

We can use simpler componentwise geometrical inclusion, and have the full test only when the simpler test is satisfied

We can use the fact that a particular join operator is used

In practice

Initial unfolding - i.e. start fp solving at some $F(\bot)$
Cyclic unfolding - i.e. compute $\text{fp}(F_k) \cup F(\text{fp}(F_k)) \cup ... F_{k-1}(\text{fp}(F_k))$
Convergence schemes

Fixpoint computation

Given a continuous upper-bound operator U, the U-iteration scheme for a strict, continuous functional F on affine sets (extended with a formal \bot and \top), is as follows:

- Start with $X_0 = \bot$
- Then iterate: $X_{u+1} = X_u UF(X_u)$
 - if $X_{u+1} \leq X_u$ then stop with X_u
 - if $\gamma(X_{u+1}) \not\subseteq I^p$, then end with \top (or any thresholding mechanism...)

Stopping criterion

- Test $X_{u+1} \leq X_u$ guarantees that X_u is a post-fixed point of F, but is costly
- We can use simpler componentwise geometrical inclusion, and have the full test only when the simpler test is satisfied
- We can use the fact that a particular join operator is used
Convergence schemes

Fixpoint computation

Given a continuous upper-bound operator \(U \), the \(U \)-iteration scheme for a strict, continuous functional \(F \) on affine sets (extended with a formal \(\perp \) and \(\top \)), is as follows:

- Start with \(X_0 = \perp \)
- Then iterate: \(X_{u+1} = X_u UF(X_u) \)
 - if \(X_{u+1} \leq X_u \) then stop with \(X_u \)
 - if \(\gamma(X_{u+1}) \not\subseteq I^p \), then end with \(\top \) (or any thresholding mechanism...)

Stopping criterion

- Test \(X_{u+1} \leq X_u \) guarantees that \(X_u \) is a post-fixed point of \(F \), but is costly
- We can use simpler componentwise geometrical inclusion, and have the full test only when the simpler test is satisfied
- We can use the fact that a particular join operator is used

In practice

- Initial unfolding - i.e. start fp solving at some \(F^l(\perp) \)
- Cyclic unfolding - i.e. compute \(fp(F^k) \cup F(fp(F^k)) \cup \ldots F^{k-1}(fp(F^k)) \)
Convergence results: from concrete to abstract

General result on recursive linear filters, pervasive in embedded programs:

\[x_{k+n+1} = \sum_{i=1}^{n} a_i x_{k+i} + \sum_{j=1}^{n+1} b_j e_{k+j}, \quad e[*] = \text{input}(m, M); \]

- Suppose this concrete scheme has bounded outputs (zeros of \(x^n - \sum_{i=0}^{n-1} a_{i+1} x^i \) have modules strictly lower than 1).
- Then there exists \(q \) such that the Kleene abstract scheme “unfolded modulo \(q \)” converges towards a finite over-approximation of the outputs

\[\hat{X}_i = \hat{X}_{i-1} \cup f^q(E_i, \ldots, E_{i-k}, \hat{X}_{i-1}, \ldots, \hat{X}_{i-k}) \]

in finite time, potentially with a widening partly losing dependency information

- The abstract scheme is a perturbation (by the join operation) of the concrete scheme
- Proof uses the stability property of our join operator: for each dimension\n \[\gamma(\hat{x} \cup \hat{y}) = \gamma(\hat{x}) \cup \gamma(\hat{y}) \] and \(f^q \) ”contractive enough” for some \(q \)
Illustration: a simple order 2 filter

\[S_{n+2} = 0.7E_{n+2} - 1.3E_{n+1} + 1.1E_n + 1.4S_{n+1} - 0.7S_n \]

Step 0: initial unfolding (10)+first cyclic unfolding (80) - first join
Step 1: After first join, perturbation of the original numerical scheme!
Step 2: second cyclic unfolding, contracting back - second join and post-fixpoint
Illustration: a simple order 2 filter

\[S_{n+2} = 0.7E_{n+2} - 1.3E_{n+1} + 1.1E_n + 1.4S_{n+1} - 0.7S_n \]

- A polyhedral approximation of the **classical ellipsoidal invariant**
- May be inefficient, for convergence, \(q \) depending on the largest eigenvalue module
- mixed zonotopic/ellipsoidal invariants?
Ellipsoidal domains

Long history

Kurzhanski in Control Theory (1991), Feret (ESOP 2004), Cousot (VMCAI 2005), Adjé et al. (ESOP 2010), Gawlitza et al. (SAS 2010), Garoche et al. (HSCC 2012) etc.

Extend affine forms to ellipsoidal forms? Change of norm (norm l_2, or l_p...)

$$\hat{x} = x_0 + \sum_{i=1}^{n} x_i \varepsilon_i, \text{ with } \|\varepsilon\|_\infty = \sup_{i=1,\ldots,n} |\varepsilon_i| \leq 1$$

\[
\begin{align*}
 x &= 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4 \\
 y &= 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4
\end{align*}
\]
Ellipsoidal domains

Long history
Kurzhanski in Control Theory (1991), Feret (ESOP 2004), Cousot (VMCAI 2005), Adjé et al. (ESOP 2010), Gawlitza et al. (SAS 2010), Garoche et al. (HSCC 2012) etc.

Extend affine forms to ellipsoidal forms? Change of norm (norm l_2, or l_p...)

\[\hat{x} = x_0 + \sum_{i=1}^{n} x_i \varepsilon_i, \text{ with } \|\varepsilon\|_2 = \sqrt{\sum_{i=1}^{n} \varepsilon_i^2} \leq 1 \]

\[x = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4 \]
\[y = 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4 \]
Ellipsoidal domains

Long history
Kurzhanski in Control Theory (1991), Feret (ESOP 2004), Cousot (VMCAI 2005), Adjé et al. (ESOP 2010), Gawlitza et al. (SAS 2010), Garoche et al. (HSCC 2012) etc.

Extend affine forms to ellipsoidal forms? Change of norm (norm \(l_2\), or \(l_p\)...

\[
\hat{x} = x_0 + \sum_{i=1}^{n} x_i \varepsilon_i, \text{ with } \|\varepsilon\|_2 = \sqrt{\sum_{i=1}^{n} \varepsilon_i^2} \leq 1
\]

Functional order
\(X \subseteq Y\) if and only if for all \(t \in \mathbb{R}^p\)

\[
\|(C^X - C^Y)t\|_2 \leq \|P^Y t\|_2 - \|P^X t\|_2
\]
Some references

- [SAS 2012] E. Goubault, S. Putot and F. Védrine, Modular Static Analysis with Zonotopes
Use of zonotopes for the verification of neural networks

Convolutional neural networks analysis

Composition of conditional affine transformations and non-affine activation functions (for example ReLU(x) = max(x, 0), etc)
- affine transformations are exactly and efficiently represented in zonotopes
- activation function has to be abstracted

Work at ETH Zurich: several articles on abstract interpretation of such networks using zonotopes, for example
- [IEEE S&P 2018] AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, T Gehr, M Mirman, D Drachsler-Cohen, P Tsankov, S Chaudhuri, M Vechev

But ... their most recent work (DeepPoly) relying on polyhedra outperforms their previous one with zonotopes! ([POPL 2019] An Abstract Domain for Certifying Neural Networks, G Singh, T Gehr, M Püschel, M Vechev)
Outline of the talk

Zonotopes as a general purpose numerical abstract domain

- Inspired from guaranteed numerical methods (affine arithmetic, Taylor methods)
- A functional abstraction: parametrized sub-polyhedral abstraction with low complexity (allows modular analysis, test generation, etc)
- Set operations and a word on fixpoint computations

Good at expressing (and propagating) perturbations

- Used for assessing safety and robustness of neural networks (ETH Zurich)
- Finite precision accuracy and robustness analysis (Fluctuat analyzer)

Possible extensions

- An interesting representation of ellipsoids?
- Under-approximations
- Mixed non-deterministic and probabilistic analysis
IEEE 754 norm on f.p. numbers specifies the rounding error (same is feasible for
fixed point semantics)

Aim: compute rounding errors and their propagation
- we need the floating-point values
- relational (thus accurate) analysis more natural on real values
- for each variable, we compute \((f^x, r^x, e^x)\)
- then we will abstract each term (real value and errors)

```c
float x, y, z;
x = 0.1; // [1]
y = 0.5; // [2]
z = x+y;  // [3]
t = x*z;  // [4]
```

\[
\begin{align*}
f^x &= 0.1 + 1.49e^{-9} \ [1] \\
f^y &= 0.5 \\
f^z &= 0.6 + 1.49e^{-9} \ [1] + 2.23e^{-8} \ [3] \\
f^t &= 0.06 + 1.04e^{-9} \ [1] + 2.23e^{-9} \ [3] - 8.94e^{-10} \ [4] - 3.55e^{-17} \ [ho]
\end{align*}
\]
Example (Fluctuat)

```c
#include "daed_builtins.h"
int main() {
    int i;
    double y = 0.7;
    double x = y;
    for (i = 1; i <= 20; i++) {
        x = 11 * x - 7;
    }
    return 0;
}
```
Abstract value

- For each variable \(x \), a triplet \((f^x, r^x, e^x)\):
 - Interval \(f^x = [\underline{f}^x, \overline{f}^x] \) bounds the finite prec value, \((\underline{f}^x, \overline{f}^x) \in F \times F\).
 - Affine forms for real value and error; for simplicity no \(\eta \) symbols

\[
f^x = (\alpha^x_0 + \bigoplus_i \alpha^x_i \varepsilon^x_i) + (\bigoplus_i e^x_i \varepsilon^e_i) + \bigoplus_i e^x_i \varepsilon^e_i + \bigoplus_i m^x_i \varepsilon^r_i \]

- Constraints on noise symbols (interval + equality constraints)
 - for finite precision control flow
 - for real control flow
Second order filters
Unstable tests: when real and finite precision control flow can be different

- Error analyses are sound only under the stable test assumption
- When considering large sets of executions, most tests are unstable
- Compute discontinuity error bounds due to unstable tests:
 - makes our error analysis sound in the presence of unstable tests
 - gives a robustness analysis of implementations (in line with work on continuity/robustness analysis of Chaudhuri Gulwani POPL 2010, Majumbar RTSS 2009 etc.)
A typical example of unstable tests: affine interpolators

All tests are unstable, but the implementation is robust, the conditional block does not introduce a discontinuity.
But actual discontinuities also occur (sqrt approximation)

```c
#include "daed_builtins.h"
#include <math.h>
#define sqrt2 1.414213538169860839843750

void main() {
    double x, y;
    x = __BUILTIN_DAED_DREAL_WITH_ERROR(1.2, 0, 0.001);
    if (x >= 2) {
        y = sqrt2 * (1 + (x/2 - 1)^2 * (0.5 - 0.125 * (x/2 - 1)));
    } else {
        y = 1 + (x - 1)^2 * (0.5 + (x - 1)^2 * (-0.125 + (x - 1)^2 * 0.0625));
    }
}
```

Variables / Files:
- x (double)
- y (double)

Potential overflows:
- Unstable test (machine and real value do not take

Warnings:
- Unstable test (machine and real value do not take

Variable Interval:
- Float:
 - 1.00000000
 - 1.45362502
- Real:
 - 1.00000000
 - 1.45312500
- Global error:
 - -3.94114776e-2
 - 3.89556561e-2
- Relative error:
 - -3.94114776e-2
 - 3.89556561e-2
- Higher Order error:
 - 0
- At current point (10) *:
 - -0.0389847
 - 0.0389847

Last analysis: 0.00 sec / 16384 Kilo Bytes
Abstract domain in Fluctuat

Abstract value at each control point c

- For each variable, affine forms for real value and error:

$$f^x = \left(\alpha_0^x + \bigoplus_i \alpha_i^x \varepsilon_i^r \right) + \left(e_0^x + \bigoplus_i e_i^x \varepsilon_i^e \right)$$

 - real value
 - center of the error
 - uncertainty on error due to point i

 - propag of uncertainty on value at pt i

- Constraints on noise symbols coming from interpretation of test condition
 - $\varepsilon^r \in \Phi^X_r$ for real control flow (test on the r^x: constraints on the ε_i^r)
 - $(\varepsilon^r, \varepsilon^e) \in \Phi^X_f$ for finite precision control flow (test on the $f^x = r^x + e^x$: constraints on the ε_i^r and ε_i^e)

Unstable test condition = intersection of constraints $\varepsilon^r \in \Phi^X_r \cap \Phi^Y_f$:

- unstable test: for a same execution (same values of the noise symbols ε_i) the control flow is different
- restricts the range of the ε_i: allows us to bound accurately the discontinuity error
Formally, sound abstraction (with discontinuity errors)

Abstract value

An abstract value X, for a program with p variables x_1, \ldots, x_p, is a tuple $X = (R^X, E^X, D^X, \Phi^X_r, \Phi^X_f)$ composed of the following affine sets and constraints, for all $k = 1, \ldots, p$:

$$\begin{cases} R^X : \hat{r}_k^X &= r_{0,k}^X + \sum_{i=1}^n r_{i,k}^X \varepsilon_i^r \\
E^X : \hat{e}_k^X &= e_{0,k}^X + \sum_{i=1}^n e_{i,k}^X \varepsilon_i^r + \sum_{j=1}^m e_{n+j,k}^X \varepsilon_j^e \\
D^X : \hat{d}_k^X &= d_{0,k}^X + \sum_{i=1}^o d_{i,k}^X \varepsilon_i^d \\
\hat{f}_k^X &= \hat{r}_k^X + \hat{e}_k^X \end{cases}$$

where $\varepsilon^r \in \Phi^X_r$ and $(\varepsilon^r, \varepsilon^e) \in \Phi^X_f$.

E^X is the propagated rounding error, D^X the propagated discontinuity error.

New discontinuity errors computed when joining branches of a possibly unstable test

$Z = X \sqcup Y$ is $Z = (R^Z, E^Z, D^Z, \Phi^Z_r \cup \Phi^Z_r, \Phi^Z_f \cup \Phi^Z_f)$ such that

$$\begin{cases} (R^Z, \Phi^Z_r \cup \Phi^Z_f) = (R^X, \Phi^X_r \cup \Phi^X_f) \sqcup (R^Y, \Phi^Y_r \cup \Phi^Y_f) \\
(E^Z, \Phi^Z_f) = (E^X, \Phi^X_f) \sqcup (E^Y, \Phi^Y_f) \\
D^Z = D^X \sqcup D^Y \sqcup (R^X - R^Y, \Phi^X_f \cap \Phi^Y_r) \sqcup (R^Y - R^X, \Phi^Y_f \cap \Phi^X_r) \end{cases}$$
Example: sound unstable test analysis

```c
int main(void) {
    double x, y;
    x = DREAL_WITH_ERROR(1, 3, 1.0e-5, 1.0e-5);
    if (x <= 2)
        y = x + 2; [1]
    else
        y = x; [2]
}
```

- Before the test: \(f^x = (2 + \varepsilon_1) + 10^{-5} \)
- Test \(x \leq 2 \):
 - in reals: \(\varepsilon_1 \leq 0 \)
 - in floats: \(\varepsilon_1 + 1.0e^{-5} \leq 0 \), ie \(\varepsilon_1 \leq -1.0e^{-5} \).
- First unstable test possibility:
 - real takes then branch: \(\varepsilon_1 \leq 0 \)
 - float takes else branch: \(\varepsilon_1 > -1.0e^{-5} \)
 - unstable test = intersection of constraints: \(-1.0e^{-5} < \varepsilon_1 \leq 0 \)
 \[f^y_{[2]} - r^y_{[1]} = (2 + \varepsilon_1 + 1.0e^{-5}) - (4 + \varepsilon_1) = -2 + 1.0e^{-5}. \]
- Second unstable test possibility: conditions \(\varepsilon_1 \leq -1.0e^{-5} \) and \(\varepsilon_1 > 0 \) are non compatible (no unstable test)
Householder algorithm for square root

```c
#include "daed_builtins.h"
#include <math.h>
#define _EPS 0.00000001 /* 10^-8 */
int main ()
{
    float xn, xnp1, residu, Input, Output,
        should_be_zero;
    int i;
    Input = FBEWEEN(16.0, 16.002);
    xn = 1.0 / Input; xnp1 = xn;
    residu = 2.0 * _EPS * (xn + xnp1) / (xn + xnp1);
    i = 0;
    while (fabs(residu) > _EPS) {
        xnp1 = xn * (1.875 + Input * xn * xn * (-1.25 + 0.375 * Input * xn * xn));
        residu = 2.0 * (xnp1 - xn) / (xn + xnp1);
        xn = xnp1;
        i++;
    }
    Output = 1.0 / xnp1;
    should_be_zero = Output - sqrt(Input);
    return 0;
}
```

![Graph showing the Householder algorithm for square root](image-url)
Some references

Latest abstractions in Fluctuat

- [APLAS 2013] E. Goubault and S. Putot, Robustness analysis of finite precision implementations (handling unstable tests)
- [VMCAI 2011] E. Goubault and S. Putot, Static Analysis of Finite Precision Computations (full zonotopic abstraction with stable test assumption)

Case studies

on industrial code, mostly control code (nuclear plants, automotive industry, aeronautics and space industry etc.)

Possible extensions of affine sets / zonotopes

Keep same parameterization $x = \sum_i x_i \varepsilon_i$ but with

- Interval/zonotopic coefficients x_i: generalized affine sets for under-approximation
 - under-approximation $= \text{sets of variables values, that are sure to be reached for some inputs in the specified ranges}$
 - using Kaucher arithmetic extending interval arithmetic over generalized intervals
 - [SAS 2007] E. Goubault and S. Putot, Under-Approximations of Computations in Real Numbers Based on Generalized Affine Arithmetic
 - But also for hybrid systems reachability analysis (VMCAI talk on Sunday!)

- Noise symbols ε_i no longer simply defined as ranging in intervals:
 - ellipsoids: $\|\varepsilon\|_2 \leq 1$ (instead of $\|\varepsilon\|_\infty \leq 1$)
 - probabilistic affine forms: ε_i take values in probability boxes
Motivation for a probabilistic extension to affine forms

Typical problem
- Some inputs known to lie in sets (non-deterministic inputs), and some a probability distribution (probabilistic inputs)
 - for example, temperature distribution known but we only know a range for pressure, in some software-driven apparatus
- Inputs may be thought of as given by **imprecise probabilities**

Discrete p-boxes or Dempster-Shafer structures
- Generalize probability distributions and interval computations
- Represent sets of probability distributions: between an upper and a lower Cumulative Distribution Function $P(X \leq x)$

![Graph demonstrating discrete p-boxes](https://via.placeholder.com/150)
Example: recursive filter with independent inputs in [-1,1]

Prove that dangerous worst case occur with very low probability

- Deterministic analysis (left): outputs in [-3.25,3.25] (exact)
- Mixed probabilistic/deterministic analysis (right): outputs in [-3.25,3.25], and in [-1,1] with very strong probability (in fact, very close to a Gaussian distribution)
Based on Dempster-Shafer structures (1976)

- Based on a notion of **focal elements** ($\in F$ - here F is a set of subsets of \mathbb{R}):
 - sets of non-deterministic events/values - here sub-intervals of values in $[-1,1]$
- Weights (positive reals) associated to focal elements ($w : F \rightarrow \mathbb{R}^+$)
 - probabilistic information available on the belonging to the focal elements, not to precise events
 - equivalent to having **staircase upper and lower probabilities**

Example:

$$d = \{ \langle [-1, 0.25], 0.1 \rangle, \langle [-0.5, 0.5], 0.2 \rangle, \langle [0.25, 1], 0.3 \rangle, \\
\langle [0.5, 1], 0.1 \rangle, \langle [0.5, 2], 0.1 \rangle, \langle [1, 2], 0.2 \rangle \}$$

represents the set of probability distributions with support $[-1, 2]$, where the probability of picking a value between -1 and 0.25 is 0.1, the probability of picking a value between -0.5 and 0.5 is 0.2 etc.
Some computation rules: $z = x \square y$ ($\square = +, -, \times, /$ etc.)

Independent variables x, y

- x (resp. y) given by focal elements F^x (resp. F^y) and weights w^x (resp. w^y)
- Define DS for z: $F^z = \{ f^x \square f^y \mid f^x \in F^x, f^y \in F^y \}$ and $w^z(f^x \square f^y) = w^x(f^x)w^y(f^y)$ (and renormalize)

Example

- x with $F^x = \{[-1, 0], [0, 1]\}$, $w^x([-1, 0]) = w^x([0, 1]) = \frac{1}{2}$ (approximation of uniform distribution on $[-1, 1]$)
- y with $F^y = \{[-2, 0], [0, 2]\}$, $w^y([-2, 0]) = w^y([0, 2]) = \frac{1}{2}$

<table>
<thead>
<tr>
<th>$x; y$</th>
<th>$[-2, 0], \frac{1}{2}$</th>
<th>$[0, 2], \frac{1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-1, 0], \frac{1}{2}$</td>
<td>$[-3, 0], \frac{1}{4}$</td>
<td>$[-1, 2], \frac{1}{4}$</td>
</tr>
<tr>
<td>$[0, 1], \frac{1}{2}$</td>
<td>$[-2, 1], \frac{1}{4}$</td>
<td>$[0, 3], \frac{1}{4}$</td>
</tr>
</tbody>
</table>

CDF of x CDF of $x + y$

Dependent variables: more costly and imprecise operations
Our approach

Encode as much deterministic dependencies as possible by affine arithmetic

\[S_{n+2} = 0.7E_{n+2} - 1.3E_{n+1} + 1.1E_n + 1.4S_{n+1} - 0.7S_n \]

- independent values
- linear dependency

because arithmetic on dependent p-boxes / DS is not very efficient

P-forms (probabilistic affine forms)

- Associate a Dempster-Shafer structure to each noise symbol
- \(\epsilon_i \) independent of each other, created by inputs
- \(\eta_j \) unknown dependencies with each other and with the \(\epsilon_i \), created by non-linear computation (including branching)
- use of Frechet bounds when dependencies are unknown, easier calculus when variables are known to be independent
- both more accurate and faster than direct DS arithmetic
Example: Ferson polynomial

- Goal: compute bounds on the solution of the differential equations

\[\dot{x}_1 = \theta_1 x_1 (1 - x_2) \quad \dot{x}_2 = \theta_2 x_2 (x_1 - 1) \]

with initial values \(x_1(0) = 1.2 \) and \(x_2(0) = 1.1 \) and uncertain parameters \(\theta_1, \theta_2 \) given by a normal distribution with mean 3 and 1, resp., but with an unknown standard deviation in the range \([-0.01, 0.01]\)
- Results with our probabilistic affine forms:

![Graphs](image)

- Application: we can, with high probability, discard some values in the resulting interval. For example, we could show that \(P(x_1 \leq 1.13) \leq 0.0552 \)
P-forms:
- [Computing 2012] O. Bouissou, E. Goubault, J. Goubault-Larrecq, S. Putot, A generalization of p-boxes to affine arithmetic
- [VSTTE 2013] A. Adje, O. Bouissou, E. Goubault, J. Goubault-Larrecq, S. Putot, Static Analysis of Programs with Imprecise Probabilistic Inputs

Improving the abstraction:
- [TACAS 2016] O. Bouissou, E. Goubault, S. Putot, A. Chakarov, S. Sankaranarayanan, Uncertainty Propagation using Probabilistic Affine Forms and Concentration of Measure Inequalities,

Application to the analysis of finite precision decision-making programs:
Implementations of zonotope abstract domains

Zonotope abstract domain

- Implemented by K. Ghorbal in the APRON library (http://apron.cri.ensmp.fr/library/, domain named Taylor1+)
- Also some version in Elina http://elina.ethz.ch (used for neural network analysis)

Application in tools for finite precision analysis

- Academic version of FLUCTUAT (proprietary tool of CEA) (can be used through an API from an other analyzer)
- PRECiSA (VMCAI 2018, An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs), also uses affine arithmetic among other abstractions